Abstract:Given the growing prevalence of diabetes, there has been significant interest in determining how diabetes affects instrumental daily functions, like driving. Complication of glucose control in diabetes includes hypoglycemic and hyperglycemic episodes, which may impair cognitive and psychomotor functions needed for safe driving. The goal of this paper was to determine patterns of diabetes speed behavior during acute glucose to drivers with diabetes who were euglycemic or control drivers without diabetes in a naturalistic driving environment. By employing distribution-based analytic methods which capture distribution patterns, our study advances prior literature that has focused on conventional approach of average speed to explore speed deviation patterns.
Abstract:The current paper implements a methodology for automatically detecting vehicle maneuvers from vehicle telemetry data under naturalistic driving settings. Previous approaches have treated vehicle maneuver detection as a classification problem, although both time series segmentation and classification are required since input telemetry data is continuous. Our objective is to develop an end-to-end pipeline for frame-by-frame annotation of naturalistic driving studies videos into various driving events including stop and lane keeping events, lane changes, left-right turning movements, and horizontal curve maneuvers. To address the time series segmentation problem, the study developed an Energy Maximization Algorithm (EMA) capable of extracting driving events of varying durations and frequencies from continuous signal data. To reduce overfitting and false alarm rates, heuristic algorithms were used to classify events with highly variable patterns such as stops and lane-keeping. To classify segmented driving events, four machine learning models were implemented, and their accuracy and transferability were assessed over multiple data sources. The duration of events extracted by EMA were comparable to actual events, with accuracies ranging from 59.30% (left lane change) to 85.60% (lane-keeping). Additionally, the overall accuracy of the 1D-convolutional neural network model was 98.99%, followed by the Long-short-term-memory model at 97.75%, then random forest model at 97.71%, and the support vector machine model at 97.65%. These model accuracies where consistent across different data sources. The study concludes that implementing a segmentation-classification pipeline significantly improves both the accuracy for driver maneuver detection and transferability of shallow and deep ML models across diverse datasets.
Abstract:In this paper, we present a novel model to detect lane regions and extract lane departure events (changes and incursions) from challenging, lower-resolution videos recorded with mobile cameras. Our algorithm used a Mask-RCNN based lane detection model as pre-processor. Recently, deep learning-based models provide state-of-the-art technology for object detection combined with segmentation. Among the several deep learning architectures, convolutional neural networks (CNNs) outperformed other machine learning models, especially for region proposal and object detection tasks. Recent development in object detection has been driven by the success of region proposal methods and region-based CNNs (R-CNNs). Our algorithm utilizes lane segmentation mask for detection and Fix-lag Kalman filter for tracking, rather than the usual approach of detecting lane lines from single video frames. The algorithm permits detection of driver lane departures into left or right lanes from continuous lane detections. Preliminary results show promise for robust detection of lane departure events. The overall sensitivity for lane departure events on our custom test dataset is 81.81%.