Abstract:By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road. Drivers over 70 face higher crash death rates compared to those in their forties and fifties, underscoring the importance of developing more effective safety interventions for this demographic. Although the impact of aging on driving behavior has been studied, there is limited research on how these behaviors translate into real-world driving scenarios. This study addresses this need by leveraging Naturalistic Driving Data (NDD) to analyze driving performance measures - specifically, speed limit adherence on interstates and deceleration at stop intersections, both of which may be influenced by age-related declines. Using NDD, we developed Cumulative Distribution Functions (CDFs) to establish benchmarks for key driving behaviors among senior and young drivers. Our analysis, which included anomaly detection, benchmark comparisons, and accuracy evaluations, revealed significant differences in driving patterns primarily related to speed limit adherence at 75mph. While our approach shows promising potential for enhancing Advanced Driver Assistance Systems (ADAS) by providing tailored interventions based on age-specific adherence to speed limit driving patterns, we recognize the need for additional data to refine and validate metrics for other driving behaviors. By establishing precise benchmarks for various driving performance metrics, ADAS can effectively identify anomalies, such as abrupt deceleration, which may indicate impaired driving or other safety concerns. This study lays a strong foundation for future research aimed at improving safety interventions through detailed driving behavior analysis.
Abstract:Safety-critical applications, such as autonomous driving, require extensive multimodal data for rigorous testing. Methods based on synthetic data are gaining prominence due to the cost and complexity of gathering real-world data but require a high degree of realism and controllability in order to be useful. This paper introduces MObI, a novel framework for Multimodal Object Inpainting that leverages a diffusion model to create realistic and controllable object inpaintings across perceptual modalities, demonstrated for both camera and lidar simultaneously. Using a single reference RGB image, MObI enables objects to be seamlessly inserted into existing multimodal scenes at a 3D location specified by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, our 3D bounding box conditioning gives objects accurate spatial positioning and realistic scaling. As a result, our approach can be used to insert novel objects flexibly into multimodal scenes, providing significant advantages for testing perception models.
Abstract:The graph neural networks has been proved to be an efficient machine learning technique in real life applications. The handwritten recognition is one of the useful area in real life use where both offline and online handwriting recognition are required. The chain code as feature extraction technique has shown significant results in literature and we have been able to use chain codes with graph neural networks. To the best of our knowledge, this work presents first time a novel combination of handwritten trajectories features as chain codes and graph neural networks together. The handwritten trajectories for offline handwritten text has been evaluated using recovery of drawing order, whereas online handwritten trajectories are directly used with chain codes. Our results prove that present combination surpass previous results and minimize error rate in few epochs only.
Abstract:The Handwritten Text Recognition problem has been a challenge for researchers for the last few decades, especially in the domain of computer vision, a subdomain of pattern recognition. Variability of texts amongst writers, cursiveness, and different font styles of handwritten texts with degradation of historical text images make it a challenging problem. Recognizing scanned document images in neural network-based systems typically involves a two-step approach: segmentation and recognition. However, this method has several drawbacks. These shortcomings encompass challenges in identifying text regions, analyzing layout diversity within pages, and establishing accurate ground truth segmentation. Consequently, these processes are prone to errors, leading to bottlenecks in achieving high recognition accuracies. Thus, in this study, we present an end-to-end paragraph recognition system that incorporates internal line segmentation and gated convolutional layers based encoder. The gating is a mechanism that controls the flow of information and allows to adaptively selection of the more relevant features in handwritten text recognition models. The attention module plays an important role in performing internal line segmentation, allowing the page to be processed line-by-line. During the decoding step, we have integrated a connectionist temporal classification-based word beam search decoder as a post-processing step. In this work, we have extended existing LexiconNet by carefully applying and utilizing gated convolutional layers in the existing deep neural network. Our results at line and page levels also favour our new GatedLexiconNet. This study reported character error rates of 2.27% on IAM, 0.9% on RIMES, and 2.13% on READ-16, and word error rates of 5.73% on IAM, 2.76% on RIMES, and 6.52% on READ-2016 datasets.
Abstract:In this study, we introduce DeepLocalization, an innovative framework devised for the real-time localization of actions tailored explicitly for monitoring driver behavior. Utilizing the power of advanced deep learning methodologies, our objective is to tackle the critical issue of distracted driving-a significant factor contributing to road accidents. Our strategy employs a dual approach: leveraging Graph-Based Change-Point Detection for pinpointing actions in time alongside a Video Large Language Model (Video-LLM) for precisely categorizing activities. Through careful prompt engineering, we customize the Video-LLM to adeptly handle driving activities' nuances, ensuring its classification efficacy even with sparse data. Engineered to be lightweight, our framework is optimized for consumer-grade GPUs, making it vastly applicable in practical scenarios. We subjected our method to rigorous testing on the SynDD2 dataset, a complex benchmark for distracted driving behaviors, where it demonstrated commendable performance-achieving 57.5% accuracy in event classification and 51% in event detection. These outcomes underscore the substantial promise of DeepLocalization in accurately identifying diverse driver behaviors and their temporal occurrences, all within the bounds of limited computational resources.
Abstract:The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions. Track 1 dealt with multi-target multi-camera (MTMC) people tracking, highlighting significant enhancements in camera count, character number, 3D annotation, and camera matrices, alongside new rules for 3D tracking and online tracking algorithm encouragement. Track 2 introduced dense video captioning for traffic safety, focusing on pedestrian accidents using multi-camera feeds to improve insights for insurance and prevention. Track 3 required teams to classify driver actions in a naturalistic driving analysis. Track 4 explored fish-eye camera analytics using the FishEye8K dataset. Track 5 focused on motorcycle helmet rule violation detection. The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks, some surpassing existing state-of-the-art achievements.
Abstract:Deep learning expresses a category of machine learning algorithms that have the capability to combine raw inputs into intermediate features layers. These deep learning algorithms have demonstrated great results in different fields. Deep learning has particularly witnessed for a great achievement of human level performance across a number of domains in computer vision and pattern recognition. For the achievement of state-of-the-art performances in diverse domains, the deep learning used different architectures and these architectures used activation functions to perform various computations between hidden and output layers of any architecture. This paper presents a survey on the existing studies of deep learning in handwriting recognition field. Even though the recent progress indicates that the deep learning methods has provided valuable means for speeding up or proving accurate results in handwriting recognition, but following from the extensive literature survey, the present study finds that the deep learning has yet to revolutionize more and has to resolve many of the most pressing challenges in this field, but promising advances have been made on the prior state of the art. Additionally, an inadequate availability of labelled data to train presents problems in this domain. Nevertheless, the present handwriting recognition survey foresees deep learning enabling changes at both bench and bedside with the potential to transform several domains as image processing, speech recognition, computer vision, machine translation, robotics and control, medical imaging, medical information processing, bio-informatics, natural language processing, cyber security, and many others.
Abstract:Graph Neural Networks (GNN) have emerged as a popular and standard approach for learning from graph-structured data. The literature on GNN highlights the potential of this evolving research area and its widespread adoption in real-life applications. However, most of the approaches are either new in concept or derived from specific techniques. Therefore, the potential of more than one approach in hybrid form has not been studied extensively, which can be well utilized for sequenced data or static data together. We derive a hybrid approach based on two established techniques as generalized aggregation networks and topology adaptive graph convolution networks that solve our purpose to apply on both types of sequenced and static nature of data, effectively. The proposed method applies to both node and graph classification. Our empirical analysis reveals that the results are at par with literature results and better for handwritten strokes as sequenced data, where graph structures have not been explored.
Abstract:Combining complementary sensor modalities is crucial to providing robust perception for safety-critical robotics applications such as autonomous driving (AD). Recent state-of-the-art camera-lidar fusion methods for AD rely on monocular depth estimation which is a notoriously difficult task compared to using depth information from the lidar directly. Here, we find that this approach does not leverage depth as expected and show that naively improving depth estimation does not lead to improvements in object detection performance and that, strikingly, removing depth estimation altogether does not degrade object detection performance. This suggests that relying on monocular depth could be an unnecessary architectural bottleneck during camera-lidar fusion. In this work, we introduce a novel fusion method that bypasses monocular depth estimation altogether and instead selects and fuses camera and lidar features in a bird's-eye-view grid using a simple attention mechanism. We show that our model can modulate its use of camera features based on the availability of lidar features and that it yields better 3D object detection on the nuScenes dataset than baselines relying on monocular depth estimation.
Abstract:Given the growing prevalence of diabetes, there has been significant interest in determining how diabetes affects instrumental daily functions, like driving. Complication of glucose control in diabetes includes hypoglycemic and hyperglycemic episodes, which may impair cognitive and psychomotor functions needed for safe driving. The goal of this paper was to determine patterns of diabetes speed behavior during acute glucose to drivers with diabetes who were euglycemic or control drivers without diabetes in a naturalistic driving environment. By employing distribution-based analytic methods which capture distribution patterns, our study advances prior literature that has focused on conventional approach of average speed to explore speed deviation patterns.