Abstract:Understanding the relationship between mild cognitive impairment and driving behavior is essential to improve road safety, especially among older adults. In this study, we computed certain variables that reflect daily driving habits, such as trips to specific locations (e.g., home, work, medical, social, and errands) of older drivers in Nebraska using geohashing. The computed variables were then analyzed using a two-fold approach involving data visualization and machine learning models (C5.0, Random Forest, Support Vector Machines) to investigate the efficiency of the computed variables in predicting whether a driver is cognitively impaired or unimpaired. The C5.0 model demonstrated robust and stable performance with a median recall of 74\%, indicating that our methodology was able to identify cognitive impairment in drivers 74\% of the time correctly. This highlights our model's effectiveness in minimizing false negatives which is an important consideration given the cost of missing impaired drivers could be potentially high. Our findings highlight the potential of life space variables in understanding and predicting cognitive decline, offering avenues for early intervention and tailored support for affected individuals.
Abstract:Given the growing prevalence of diabetes, there has been significant interest in determining how diabetes affects instrumental daily functions, like driving. Complication of glucose control in diabetes includes hypoglycemic and hyperglycemic episodes, which may impair cognitive and psychomotor functions needed for safe driving. The goal of this paper was to determine patterns of diabetes speed behavior during acute glucose to drivers with diabetes who were euglycemic or control drivers without diabetes in a naturalistic driving environment. By employing distribution-based analytic methods which capture distribution patterns, our study advances prior literature that has focused on conventional approach of average speed to explore speed deviation patterns.