Traffic crash detection in long-form surveillance videos is critical for emergency response and infrastructure planning but remains difficult due to the brief and rare nature of crash events. We introduce HybridMamba, a novel architecture that combines visual transformers with state-space temporal modeling to achieve accurate crash time localization. Our method uses multi-level token compression and hierarchical temporal processing to remain computationally efficient without sacrificing temporal resolution. Evaluated on a large-scale dataset from the Iowa Department of Transportation, HybridMamba achieves a mean absolute error of 1.50 seconds, with 65.2 percent of predictions within one second of the ground truth. It outperforms recent video-language models such as TimeChat and VideoLLaMA2 by up to 2.8 seconds, while using significantly fewer parameters. Our results demonstrate strong generalization across videos ranging from 2 to 40 minutes in diverse conditions. HybridMamba offers a robust and efficient solution for fine-grained temporal localization in traffic surveillance. The code will be released upon publication.