Abstract:The accurate detection and segmentation of pavement distresses, particularly tiny and small cracks, are critical for early intervention and preventive maintenance in transportation infrastructure. Traditional manual inspection methods are labor-intensive and inconsistent, while existing deep learning models struggle with fine-grained segmentation and computational efficiency. To address these challenges, this study proposes Context-CrackNet, a novel encoder-decoder architecture featuring the Region-Focused Enhancement Module (RFEM) and Context-Aware Global Module (CAGM). These innovations enhance the model's ability to capture fine-grained local details and global contextual dependencies, respectively. Context-CrackNet was rigorously evaluated on ten publicly available crack segmentation datasets, covering diverse pavement distress scenarios. The model consistently outperformed 9 state-of-the-art segmentation frameworks, achieving superior performance metrics such as mIoU and Dice score, while maintaining competitive inference efficiency. Ablation studies confirmed the complementary roles of RFEM and CAGM, with notable improvements in mIoU and Dice score when both modules were integrated. Additionally, the model's balance of precision and computational efficiency highlights its potential for real-time deployment in large-scale pavement monitoring systems.
Abstract:Automated pavement monitoring using computer vision can analyze pavement conditions more efficiently and accurately than manual methods. Accurate segmentation is essential for quantifying the severity and extent of pavement defects and consequently, the overall condition index used for prioritizing rehabilitation and maintenance activities. Deep learning-based segmentation models are however, often supervised and require pixel-level annotations, which can be costly and time-consuming. While the recent evolution of zero-shot segmentation models can generate pixel-wise labels for unseen classes without any training data, they struggle with irregularities of cracks and textured pavement backgrounds. This research proposes a zero-shot segmentation model, PaveSAM, that can segment pavement distresses using bounding box prompts. By retraining SAM's mask decoder with just 180 images, pavement distress segmentation is revolutionized, enabling efficient distress segmentation using bounding box prompts, a capability not found in current segmentation models. This not only drastically reduces labeling efforts and costs but also showcases our model's high performance with minimal input, establishing the pioneering use of SAM in pavement distress segmentation. Furthermore, researchers can use existing open-source pavement distress images annotated with bounding boxes to create segmentation masks, which increases the availability and diversity of segmentation pavement distress datasets.
Abstract:Road infrastructure maintenance in developing countries faces unique challenges due to resource constraints and diverse environmental factors. This study addresses the critical need for efficient, accurate, and locally-relevant pavement distress detection methods in these regions. We present a novel deep learning approach combining YOLO (You Only Look Once) object detection models with a Convolutional Block Attention Module (CBAM) to simultaneously detect and classify multiple pavement distress types. The model demonstrates robust performance in detecting and classifying potholes, longitudinal cracks, alligator cracks, and raveling, with confidence scores ranging from 0.46 to 0.93. While some misclassifications occur in complex scenarios, these provide insights into unique challenges of pavement assessment in developing countries. Additionally, we developed a web-based application for real-time distress detection from images and videos. This research advances automated pavement distress detection and provides a tailored solution for developing countries, potentially improving road safety, optimizing maintenance strategies, and contributing to sustainable transportation infrastructure development.
Abstract:This research introduces the first multimodal approach for pavement condition assessment, providing both quantitative Pavement Condition Index (PCI) predictions and qualitative descriptions. We introduce PaveCap, a novel framework for automated pavement condition assessment. The framework consists of two main parts: a Single-Shot PCI Estimation Network and a Dense Captioning Network. The PCI Estimation Network uses YOLOv8 for object detection, the Segment Anything Model (SAM) for zero-shot segmentation, and a four-layer convolutional neural network to predict PCI. The Dense Captioning Network uses a YOLOv8 backbone, a Transformer encoder-decoder architecture, and a convolutional feed-forward module to generate detailed descriptions of pavement conditions. To train and evaluate these networks, we developed a pavement dataset with bounding box annotations, textual annotations, and PCI values. The results of our PCI Estimation Network showed a strong positive correlation (0.70) between predicted and actual PCIs, demonstrating its effectiveness in automating condition assessment. Also, the Dense Captioning Network produced accurate pavement condition descriptions, evidenced by high BLEU (0.7445), GLEU (0.5893), and METEOR (0.7252) scores. Additionally, the dense captioning model handled complex scenarios well, even correcting some errors in the ground truth data. The framework developed here can greatly improve infrastructure management and decision18 making in pavement maintenance.
Abstract:This study addresses the evolving challenges in urban traffic monitoring detection systems based on fisheye lens cameras by proposing a framework that improves the efficacy and accuracy of these systems. In the context of urban infrastructure and transportation management, advanced traffic monitoring systems have become critical for managing the complexities of urbanization and increasing vehicle density. Traditional monitoring methods, which rely on static cameras with narrow fields of view, are ineffective in dynamic urban environments, necessitating the installation of multiple cameras, which raises costs. Fisheye lenses, which were recently introduced, provide wide and omnidirectional coverage in a single frame, making them a transformative solution. However, issues such as distorted views and blurriness arise, preventing accurate object detection on these images. Motivated by these challenges, this study proposes a novel approach that combines a ransformer-based image enhancement framework and ensemble learning technique to address these challenges and improve traffic monitoring accuracy, making significant contributions to the future of intelligent traffic management systems. Our proposed methodological framework won 5th place in the 2024 AI City Challenge, Track 4, with an F1 score of 0.5965 on experimental validation data. The experimental results demonstrate the effectiveness, efficiency, and robustness of the proposed system. Our code is publicly available at https://github.com/daitranskku/AIC2024-TRACK4-TEAM15.
Abstract:This paper introduces our solution for Track 2 in AI City Challenge 2024. The task aims to solve traffic safety description and analysis with the dataset of Woven Traffic Safety (WTS), a real-world Pedestrian-Centric Traffic Video Dataset for Fine-grained Spatial-Temporal Understanding. Our solution mainly focuses on the following points: 1) To solve dense video captioning, we leverage the framework of dense video captioning with parallel decoding (PDVC) to model visual-language sequences and generate dense caption by chapters for video. 2) Our work leverages CLIP to extract visual features to more efficiently perform cross-modality training between visual and textual representations. 3) We conduct domain-specific model adaptation to mitigate domain shift problem that poses recognition challenge in video understanding. 4) Moreover, we leverage BDD-5K captioned videos to conduct knowledge transfer for better understanding WTS videos and more accurate captioning. Our solution has yielded on the test set, achieving 6th place in the competition. The open source code will be available at https://github.com/UCF-SST-Lab/AICity2024CVPRW
Abstract:Traffic volume data collection is a crucial aspect of transportation engineering and urban planning, as it provides vital insights into traffic patterns, congestion, and infrastructure efficiency. Traditional manual methods of traffic data collection are both time-consuming and costly. However, the emergence of modern technologies, particularly Light Detection and Ranging (LiDAR), has revolutionized the process by enabling efficient and accurate data collection. Despite the benefits of using LiDAR for traffic data collection, previous studies have identified two major limitations that have impeded its widespread adoption. These are the need for multiple LiDAR systems to obtain complete point cloud information of objects of interest, as well as the labor-intensive process of annotating 3D bounding boxes for object detection tasks. In response to these challenges, the current study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process. To achieve this goal, the study employed a single LiDAR system, that aims at reducing the data acquisition cost and addressed its accompanying limitation of missing point cloud information by developing a Point Cloud Completion (PCC) framework to fill in missing point cloud information using point density. Furthermore, we also used zero-shot learning techniques to detect vehicles and pedestrians, as well as proposed a unique framework for extracting low to high features from the object of interest, such as height, acceleration, and speed. Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
Abstract:The Pavement Condition Index (PCI) is a widely used metric for evaluating pavement performance based on the type, extent and severity of distresses detected on a pavement surface. In recent times, significant progress has been made in utilizing deep-learning approaches to automate PCI estimation process. However, the current approaches rely on at least two separate models to estimate PCI values -- one model dedicated to determining the type and extent and another for estimating their severity. This approach presents several challenges, including complexities, high computational resource demands, and maintenance burdens that necessitate careful consideration and resolution. To overcome these challenges, the current study develops a unified multi-tasking model that predicts the PCI directly from a top-down pavement image. The proposed architecture is a multi-task model composed of one encoder for feature extraction and four decoders to handle specific tasks: two detection heads, one segmentation head and one PCI estimation head. By multitasking, we are able to extract features from the detection and segmentation heads for automatically estimating the PCI directly from the images. The model performs very well on our benchmarked and open pavement distress dataset that is annotated for multitask learning (the first of its kind). To our best knowledge, this is the first work that can estimate PCI directly from an image at real time speeds while maintaining excellent accuracy on all related tasks for crack detection and segmentation.
Abstract:Real-time pavement condition monitoring provides highway agencies with timely and accurate information that could form the basis of pavement maintenance and rehabilitation policies. Existing technologies rely heavily on manual data processing, are expensive and therefore, difficult to scale for frequent, networklevel pavement condition monitoring. Additionally, these systems require sending large packets of data to the cloud which requires large storage space, are computationally expensive to process, and results in high latency. The current study proposes a solution that capitalizes on the widespread availability of affordable Micro Electro-Mechanical System (MEMS) sensors, edge computing and internet connection capabilities of microcontrollers, and deployable machine learning (ML) models to (a) design an Internet of Things (IoT)-enabled device that can be mounted on axles of vehicles to stream live pavement condition data (b) reduce latency through on-device processing and analytics of pavement condition sensor data before sending to the cloud servers. In this study, three ML models including Random Forest, LightGBM and XGBoost were trained to predict International Roughness Index (IRI) at every 0.1-mile segment. XGBoost had the highest accuracy with an RMSE and MAPE of 16.89in/mi and 20.3%, respectively. In terms of the ability to classify the IRI of pavement segments based on ride quality according to MAP-21 criteria, our proposed device achieved an average accuracy of 96.76% on I-70EB and 63.15% on South Providence. Overall, our proposed device demonstrates significant potential in providing real-time pavement condition data to State Highway Agencies (SHA) and Department of Transportation (DOTs) with a satisfactory level of accuracy.
Abstract:The application of eye-tracking techniques in medical image analysis has become increasingly popular in recent years. It collects the visual search patterns of the domain experts, containing much important information about health and disease. Therefore, how to efficiently integrate radiologists' gaze patterns into the diagnostic analysis turns into a critical question. Existing works usually transform gaze information into visual attention maps (VAMs) to supervise the learning process. However, this time-consuming procedure makes it difficult to develop end-to-end algorithms. In this work, we propose a novel gaze-guided graph neural network (GNN), GazeGNN, to perform disease classification from medical scans. In GazeGNN, we create a unified representation graph that models both the image and gaze pattern information. Hence, the eye-gaze information is directly utilized without being converted into VAMs. With this benefit, we develop a real-time, real-world, end-to-end disease classification algorithm for the first time and avoid the noise and time consumption introduced during the VAM preparation. To our best knowledge, GazeGNN is the first work that adopts GNN to integrate image and eye-gaze data. Our experiments on the public chest X-ray dataset show that our proposed method exhibits the best classification performance compared to existing methods.