Tony
Abstract:GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Abstract:We introduce MLE-bench, a benchmark for measuring how well AI agents perform at machine learning engineering. To this end, we curate 75 ML engineering-related competitions from Kaggle, creating a diverse set of challenging tasks that test real-world ML engineering skills such as training models, preparing datasets, and running experiments. We establish human baselines for each competition using Kaggle's publicly available leaderboards. We use open-source agent scaffolds to evaluate several frontier language models on our benchmark, finding that the best-performing setup--OpenAI's o1-preview with AIDE scaffolding--achieves at least the level of a Kaggle bronze medal in 16.9% of competitions. In addition to our main results, we investigate various forms of resource scaling for AI agents and the impact of contamination from pre-training. We open-source our benchmark code (github.com/openai/mle-bench/) to facilitate future research in understanding the ML engineering capabilities of AI agents.
Abstract:Large Language Models (LLMs) are able to provide assistance on a wide range of information-seeking tasks. However, model outputs may be misleading, whether unintentionally or in cases of intentional deception. We investigate the ability of LLMs to be deceptive in the context of providing assistance on a reading comprehension task, using LLMs as proxies for human users. We compare outcomes of (1) when the model is prompted to provide truthful assistance, (2) when it is prompted to be subtly misleading, and (3) when it is prompted to argue for an incorrect answer. Our experiments show that GPT-4 can effectively mislead both GPT-3.5-Turbo and GPT-4, with deceptive assistants resulting in up to a 23% drop in accuracy on the task compared to when a truthful assistant is used. We also find that providing the user model with additional context from the passage partially mitigates the influence of the deceptive model. This work highlights the ability of LLMs to produce misleading information and the effects this may have in real-world situations.