Abstract:This study addresses the problem of calibrating network confidence while adapting a model that was originally trained on a source domain to a target domain using unlabeled samples from the target domain. The absence of labels from the target domain makes it impossible to directly calibrate the adapted network on the target domain. To tackle this challenge, we introduce a calibration procedure that relies on estimating the network's accuracy on the target domain. The network accuracy is first computed on the labeled source data and then is modified to represent the actual accuracy of the model on the target domain. The proposed algorithm calibrates the prediction confidence directly in the target domain by minimizing the disparity between the estimated accuracy and the computed confidence. The experimental results show that our method significantly outperforms existing methods, which rely on importance weighting, across several standard datasets.
Abstract:Medical imaging classifiers can achieve high predictive accuracy, but quantifying their uncertainty remains an unresolved challenge, which prevents their deployment in medical clinics. We present an algorithm that can modify any classifier to produce a prediction set containing the true label with a user-specified probability, such as 90%. We train a network to predict an instance-based version of the Conformal Prediction threshold. The threshold is then conformalized to ensure the required coverage. We applied the proposed algorithm to several standard medical imaging classification datasets. The experimental results demonstrate that our method outperforms current approaches in terms of smaller average size of the prediction set while maintaining the desired coverage.
Abstract:Multi-document summarization (MDS) is a challenging task, often decomposed to subtasks of salience and redundancy detection, followed by text generation. In this context, alignment of corresponding sentences between a reference summary and its source documents has been leveraged to generate training data for some of the component tasks. Yet, this enabling alignment step has usually been applied heuristically on the sentence level on a limited number of subtasks. In this paper, we propose extending the summary-source alignment framework by (1) applying it at the more fine-grained proposition span level, (2) annotating alignment manually in a multi-document setup, and (3) revealing the great potential of summary-source alignments to yield several datasets for at least six different tasks. Specifically, for each of the tasks, we release a manually annotated test set that was derived automatically from the alignment annotation. We also release development and train sets in the same way, but from automatically derived alignments. Using the datasets, each task is demonstrated with baseline models and corresponding evaluation metrics to spur future research on this broad challenge.
Abstract:Conformal Prediction (CP) quantifies network uncertainty by building a small prediction set with a pre-defined probability that the correct class is within this set. In this study we tackle the problem of CP calibration based on a validation set with noisy labels. We introduce a conformal score that is robust to label noise. The noise-free conformal score is estimated using the noisy labeled data and the noise level. In the test phase the noise-free score is used to form the prediction set. We applied the proposed algorithm to several standard medical imaging classification datasets. We show that our method outperforms current methods by a large margin, in terms of the average size of the prediction set, while maintaining the required coverage.
Abstract:The integration of multi-document pre-training objectives into language models has resulted in remarkable improvements in multi-document downstream tasks. In this work, we propose extending this idea by pre-training a generic multi-document model from a novel cross-document question answering pre-training objective. To that end, given a set (or cluster) of topically-related documents, we systematically generate semantically-oriented questions from a salient sentence in one document and challenge the model, during pre-training, to answer these questions while "peeking" into other topically-related documents. In a similar manner, the model is also challenged to recover the sentence from which the question was generated, again while leveraging cross-document information. This novel multi-document QA formulation directs the model to better recover cross-text informational relations, and introduces a natural augmentation that artificially increases the pre-training data. Further, unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation (e.g., QA) and long text generation (e.g., summarization). Following this scheme, we pre-train our model -- termed QAmden -- and evaluate its performance across several multi-document tasks, including multi-document QA, summarization, and query-focused summarization, yielding improvements of up to 7%, and significantly outperforms zero-shot GPT-3.5 and GPT-4.
Abstract:Language models generate text based on successively sampling the next word. A decoding procedure based on nucleus (top-$p$) sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability $p$. In this work, we assess whether a top-$p$ set is indeed aligned with its probabilistic meaning in various linguistic contexts. We employ conformal prediction, a calibration procedure that focuses on the construction of minimal prediction sets according to a desired confidence level, to calibrate the parameter $p$ as a function of the entropy of the next word distribution. We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.
Abstract:Long-range transformer models have achieved encouraging results on long-context question answering (QA) tasks. Such tasks often require reasoning over a long document, and they benefit from identifying a set of evidence spans (e.g., sentences) that provide supporting evidence for addressing the question. In this work, we propose a novel method for equipping long-range transformers with an additional sequence-level objective for better identification of supporting evidence spans. We achieve this by proposing an additional contrastive supervision signal in finetuning, where the model is encouraged to explicitly discriminate supporting evidence sentences from negative ones by maximizing the question-evidence similarity. The proposed additional loss exhibits consistent improvements on three different strong long-context transformer models, across two challenging question answering benchmarks - HotpotQA and QAsper.
Abstract:Text clustering methods were traditionally incorporated into multi-document summarization (MDS) as a means for coping with considerable information repetition. Clusters were leveraged to indicate information saliency and to avoid redundancy. These methods focused on clustering sentences, even though closely related sentences also usually contain non-aligning information. In this work, we revisit the clustering approach, grouping together propositions for more precise information alignment. Specifically, our method detects salient propositions, clusters them into paraphrastic clusters, and generates a representative sentence for each cluster by fusing its propositions. Our summarization method improves over the previous state-of-the-art MDS method in the DUC 2004 and TAC 2011 datasets, both in automatic ROUGE scores and human preference.
Abstract:We introduce a new approach for smoothing and improving the quality of word embeddings. We consider a method of fusing word embeddings that were trained on the same corpus but with different initializations. We project all the models to a shared vector space using an efficient implementation of the Generalized Procrustes Analysis (GPA) procedure, previously used in multilingual word translation. Our word representation demonstrates consistent improvements over the raw models as well as their simplistic average, on a range of tasks. As the new representations are more stable and reliable, there is a noticeable improvement in rare word evaluations.
Abstract:In this study we present a mixture of deep experts (MoDE) neural-network architecture for single microphone speech enhancement. Our architecture comprises a set of deep neural networks (DNNs), each of which is an 'expert' in a different speech spectral pattern such as phoneme. A gating DNN is responsible for the latent variables which are the weights assigned to each expert's output given a speech segment. The experts estimate a mask from the noisy input and the final mask is then obtained as a weighted average of the experts' estimates, with the weights determined by the gating DNN. A soft spectral attenuation, based on the estimated mask, is then applied to enhance the noisy speech signal. As a byproduct, we gain reduction at the complexity in test time. We show that the experts specialization allows better robustness to unfamiliar noise types.