Abstract:Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.
Abstract:This paper evaluates the performance of Large Language Models (LLMs) in authorship attribution and authorship verification tasks for Latin texts of the Patristic Era. The study showcases that LLMs can be robust in zero-shot authorship verification even on short texts without sophisticated feature engineering. Yet, the models can also be easily "mislead" by semantics. The experiments also demonstrate that steering the model's authorship analysis and decision-making is challenging, unlike what is reported in the studies dealing with high-resource modern languages. Although LLMs prove to be able to beat, under certain circumstances, the traditional baselines, obtaining a nuanced and truly explainable decision requires at best a lot of experimentation.
Abstract:We show differences between a language-and-vision model CLIP and two text-only models - FastText and SBERT - when it comes to the encoding of individuation information. We study latent representations that CLIP provides for substrates, granular aggregates, and various numbers of objects. We demonstrate that CLIP embeddings capture quantitative differences in individuation better than models trained on text-only data. Moreover, the individuation hierarchy we deduce from the CLIP embeddings agrees with the hierarchies proposed in linguistics and cognitive science.
Abstract:Language models can largely benefit from efficient tokenization. However, they still mostly utilize the classical BPE algorithm, a simple and reliable method. This has been shown to cause such issues as under-trained tokens and sub-optimal compression that may affect the downstream performance. We introduce Picky BPE, a modified BPE algorithm that carries out vocabulary refinement during tokenizer training. Our method improves vocabulary efficiency, eliminates under-trained tokens, and does not compromise text compression. Our experiments show that our method does not reduce the downstream performance, and in several cases improves it.
Abstract:With the rise of computational social science, many scholars utilize data analysis and natural language processing tools to analyze social media, news articles, and other accessible data sources for examining political and social discourse. Particularly, the study of the emergence of echo-chambers due to the dissemination of specific information has become a topic of interest in mixed methods research areas. In this paper, we analyze data collected from two news portals, Breitbart News (BN) and New York Times (NYT) to prove the hypothesis that the formation of echo-chambers can be partially explained on the level of an individual information consumption rather than a collective topology of individuals' social networks. Our research findings are presented through knowledge graphs, utilizing a dataset spanning 11.5 years gathered from BN and NYT media portals. We demonstrate that the application of knowledge representation techniques to the aforementioned news streams highlights, contrary to common assumptions, shows relative "internal" neutrality of both sources and polarizing attitude towards a small fraction of entities. Additionally, we argue that such characteristics in information sources lead to fundamental disparities in audience worldviews, potentially acting as a catalyst for the formation of echo-chambers.
Abstract:This paper investigates the communication styles and structures of Twitter (X) communities within the vaccination context. While mainstream research primarily focuses on the echo-chamber phenomenon, wherein certain ideas are reinforced and participants are isolated from opposing opinions, this study reveals the presence of diverse communication styles across various communities. In addition to the communities exhibiting echo-chamber behavior, this research uncovers communities with distinct communication patterns. By shedding light on the nuanced nature of communication within social networks, this study emphasizes the significance of understanding the diversity of perspectives within online communities.
Abstract:Evaluation plays a significant role in modern natural language processing. Most modern NLP benchmarks consist of arbitrary sets of tasks that neither guarantee any generalization potential for the model once applied outside the test set nor try to minimize the resource consumption needed for model evaluation. This paper presents a theoretical instrument and a practical algorithm to calculate similarity between benchmark tasks, we call this similarity measure "Vygotsky distance". The core idea of this similarity measure is that it is based on relative performance of the "students" on a given task, rather that on the properties of the task itself. If two tasks are close to each other in terms of Vygotsky distance the models tend to have similar relative performance on them. Thus knowing Vygotsky distance between tasks one can significantly reduce the number of evaluation tasks while maintaining a high validation quality. Experiments on various benchmarks, including GLUE, SuperGLUE, CLUE, and RussianSuperGLUE, demonstrate that a vast majority of NLP benchmarks could be at least 40% smaller in terms of the tasks included. Most importantly, Vygotsky distance could also be used for the validation of new tasks thus increasing the generalization potential of the future NLP models.
Abstract:This study explores four methods of generating paraphrases in Malayalam, utilizing resources available for English paraphrasing and pre-trained Neural Machine Translation (NMT) models. We evaluate the resulting paraphrases using both automated metrics, such as BLEU, METEOR, and cosine similarity, as well as human annotation. Our findings suggest that automated evaluation measures may not be fully appropriate for Malayalam, as they do not consistently align with human judgment. This discrepancy underscores the need for more nuanced paraphrase evaluation approaches especially for highly agglutinative languages.
Abstract:An empirical investigation into the simulation of the Big Five personality traits by large language models (LLMs), namely Llama2, GPT4, and Mixtral, is presented. We analyze the personality traits simulated by these models and their stability. This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits and the respective implications for personalized human-computer interaction.
Abstract:In the rapidly evolving landscape of Large Language Models (LLMs), introduction of well-defined and standardized evaluation methodologies remains a crucial challenge. This paper traces the historical trajectory of LLM evaluations, from the foundational questions posed by Alan Turing to the modern era of AI research. We categorize the evolution of LLMs into distinct periods, each characterized by its unique benchmarks and evaluation criteria. As LLMs increasingly mimic human-like behaviors, traditional evaluation proxies, such as the Turing test, have become less reliable. We emphasize the pressing need for a unified evaluation system, given the broader societal implications of these models. Through an analysis of common evaluation methodologies, we advocate for a qualitative shift in assessment approaches, underscoring the importance of standardization and objective criteria. This work serves as a call for the AI community to collaboratively address the challenges of LLM evaluation, ensuring their reliability, fairness, and societal benefit.