Abstract:Humor generation is a challenging task in natural language processing due to limited resources and the quality of existing datasets. Available humor language resources often suffer from toxicity and duplication, limiting their effectiveness for training robust models. This paper proposes CleanComedy, a specialized, partially annotated toxicity-filtered corpus of English and Russian jokes collected from various sources. We study the effectiveness of our data filtering approach through a survey on humor and toxicity levels in various joke groups. In addition, we study advances in computer humor generation by comparing jokes written by humans with various groups of generative jokes, including our baseline models trained on the CleanComedy datasets.
Abstract:This paper evaluates the performance of Large Language Models (LLMs) in authorship attribution and authorship verification tasks for Latin texts of the Patristic Era. The study showcases that LLMs can be robust in zero-shot authorship verification even on short texts without sophisticated feature engineering. Yet, the models can also be easily "mislead" by semantics. The experiments also demonstrate that steering the model's authorship analysis and decision-making is challenging, unlike what is reported in the studies dealing with high-resource modern languages. Although LLMs prove to be able to beat, under certain circumstances, the traditional baselines, obtaining a nuanced and truly explainable decision requires at best a lot of experimentation.