Abstract:Humor generation is a challenging task in natural language processing due to limited resources and the quality of existing datasets. Available humor language resources often suffer from toxicity and duplication, limiting their effectiveness for training robust models. This paper proposes CleanComedy, a specialized, partially annotated toxicity-filtered corpus of English and Russian jokes collected from various sources. We study the effectiveness of our data filtering approach through a survey on humor and toxicity levels in various joke groups. In addition, we study advances in computer humor generation by comparing jokes written by humans with various groups of generative jokes, including our baseline models trained on the CleanComedy datasets.
Abstract:This paper studies the limits of language models' statistical learning in the context of Zipf's law. First, we demonstrate that Zipf-law token distribution emerges irrespective of the chosen tokenization. Second, we show that Zipf distribution is characterized by two distinct groups of tokens that differ both in terms of their frequency and their semantics. Namely, the tokens that have a one-to-one correspondence with one semantic concept have different statistical properties than those with semantic ambiguity. Finally, we demonstrate how these properties interfere with statistical learning procedures motivated by distributional semantics.