Abstract:This paper explores the application of large language models (LLMs) in designing strategic mechanisms -- including auctions, contracts, and games -- for specific purposes in communication networks. Traditionally, strategic mechanism design in telecommunications has relied on human expertise to craft solutions based on game theory, auction theory, and contract theory. However, the evolving landscape of telecom networks, characterized by increasing abstraction, emerging use cases, and novel value creation opportunities, calls for more adaptive and efficient approaches. We propose leveraging LLMs to automate or semi-automate the process of strategic mechanism design, from intent specification to final formulation. This paradigm shift introduces both semi-automated and fully-automated design pipelines, raising crucial questions about faithfulness to intents, incentive compatibility, algorithmic stability, and the balance between human oversight and artificial intelligence (AI) autonomy. The paper discusses potential frameworks, such as retrieval-augmented generation (RAG)-based systems, to implement LLM-driven mechanism design in communication networks contexts. We examine key challenges, including LLM limitations in capturing domain-specific constraints, ensuring strategy proofness, and integrating with evolving telecom standards. By providing an in-depth analysis of the synergies and tensions between LLMs and strategic mechanism design within the IoT ecosystem, this work aims to stimulate discussion on the future of AI-driven information economic mechanisms in telecommunications and their potential to address complex, dynamic network management scenarios.
Abstract:The telecommunications industry's rapid evolution demands intelligent systems capable of managing complex networks and adapting to emerging technologies. While large language models (LLMs) show promise in addressing these challenges, their deployment in telecom environments faces significant constraints due to edge device limitations and inconsistent documentation. To bridge this gap, we present TeleOracle, a telecom-specialized retrieval-augmented generation (RAG) system built on the Phi-2 small language model (SLM). To improve context retrieval, TeleOracle employs a two-stage retriever that incorporates semantic chunking and hybrid keyword and semantic search. Additionally, we expand the context window during inference to enhance the model's performance on open-ended queries. We also employ low-rank adaption for efficient fine-tuning. A thorough analysis of the model's performance indicates that our RAG framework is effective in aligning Phi-2 to the telecom domain in a downstream question and answer (QnA) task, achieving a 30% improvement in accuracy over the base Phi-2 model, reaching an overall accuracy of 81.20%. Notably, we show that our model not only performs on par with the much larger LLMs but also achieves a higher faithfulness score, indicating higher adherence to the retrieved context.
Abstract:Recent studies show that large language models (LLMs) struggle with technical standards in telecommunications. We propose a fine-tuned retrieval-augmented generation (RAG) system based on the Phi-2 small language model (SLM) to serve as an oracle for communication networks. Our developed system leverages forward-looking semantic chunking to adaptively determine parsing breakpoints based on embedding similarity, enabling effective processing of diverse document formats. To handle the challenge of multiple similar contexts in technical standards, we employ a re-ranking algorithm to prioritize the most relevant retrieved chunks. Recognizing the limitations of Phi-2's small context window, we implement a recent technique, namely SelfExtend, to expand the context window during inference, which not only boosts the performance but also can accommodate a wider range of user queries and design requirements from customers to specialized technicians. For fine-tuning, we utilize the low-rank adaptation (LoRA) technique to enhance computational efficiency during training and enable effective fine-tuning on small datasets. Our comprehensive experiments demonstrate substantial improvements over existing question-answering approaches in the telecom domain, achieving performance that exceeds larger language models such as GPT-4 (which is about 880 times larger in size). This work presents a novel approach to leveraging SLMs for communication networks, offering a balance of efficiency and performance. This work can serve as a foundation towards agentic language models for networks.
Abstract:In this paper, we tackle the issue of moral hazard within the realm of the vehicular Metaverse. A pivotal facilitator of the vehicular Metaverse is the effective orchestration of its market elements, primarily comprised of sensing internet of things (SIoT) devices. These SIoT devices play a critical role by furnishing the virtual service provider (VSP) with real-time sensing data, allowing for the faithful replication of the physical environment within the virtual realm. However, SIoT devices with intentional misbehavior can identify a loophole in the system post-payment and proceeds to deliver falsified content, which cause the whole vehicular Metaverse to collapse. To combat this significant problem, we propose an incentive mechanism centered around a reputation-based strategy. Specifically, the concept involves maintaining reputation scores for participants based on their interactions with the VSP. These scores are derived from feedback received by the VSP from Metaverse users regarding the content delivered by the VSP and are managed using a subjective logic model. Nevertheless, to prevent ``good" SIoT devices with false positive ratings to leave the Metaverse market, we build a vanishing-like system of previous ratings so that the VSP can make informed decisions based on the most recent and accurate data available. Finally, we validate our proposed model through extensive simulations. Our primary results show that our mechanism can efficiently prevent malicious devices from starting their poisoning attacks. At the same time, trustworthy SIoT devices that had a previous miss-classification are not banned from the market.
Abstract:In this paper, we address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data to help creating and rendering the digital copy of the physical world in the Metaverse. Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices. Nevertheless, mechanisms to hire sensing IoT devices to share their data with the VSP and then deliver the constructed digital twin to the Metaverse users are vulnerable to adverse selection problem. The adverse selection problem, which is caused by information asymmetry between the system entities, becomes harder to solve when the private information of the different entities are multi-dimensional. We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem. To demonstrate the effectiveness of our algorithm, we conduct extensive simulations and measure several key performance metrics of the contract for the Metaverse. Our results show that our designed iterative contract is able to incentivize the participants to interact truthfully, which maximizes the profit of the VSP with minimal individual rationality (IR) and incentive compatibility (IC) violation rates. Furthermore, the proposed learning-based iterative contract framework has limited access to the private information of the participants, which is to the best of our knowledge, the first of its kind in addressing the problem of adverse selection in incentive mechanisms.