Abstract:This paper explores the application of large language models (LLMs) in designing strategic mechanisms -- including auctions, contracts, and games -- for specific purposes in communication networks. Traditionally, strategic mechanism design in telecommunications has relied on human expertise to craft solutions based on game theory, auction theory, and contract theory. However, the evolving landscape of telecom networks, characterized by increasing abstraction, emerging use cases, and novel value creation opportunities, calls for more adaptive and efficient approaches. We propose leveraging LLMs to automate or semi-automate the process of strategic mechanism design, from intent specification to final formulation. This paradigm shift introduces both semi-automated and fully-automated design pipelines, raising crucial questions about faithfulness to intents, incentive compatibility, algorithmic stability, and the balance between human oversight and artificial intelligence (AI) autonomy. The paper discusses potential frameworks, such as retrieval-augmented generation (RAG)-based systems, to implement LLM-driven mechanism design in communication networks contexts. We examine key challenges, including LLM limitations in capturing domain-specific constraints, ensuring strategy proofness, and integrating with evolving telecom standards. By providing an in-depth analysis of the synergies and tensions between LLMs and strategic mechanism design within the IoT ecosystem, this work aims to stimulate discussion on the future of AI-driven information economic mechanisms in telecommunications and their potential to address complex, dynamic network management scenarios.
Abstract:The telecommunications industry's rapid evolution demands intelligent systems capable of managing complex networks and adapting to emerging technologies. While large language models (LLMs) show promise in addressing these challenges, their deployment in telecom environments faces significant constraints due to edge device limitations and inconsistent documentation. To bridge this gap, we present TeleOracle, a telecom-specialized retrieval-augmented generation (RAG) system built on the Phi-2 small language model (SLM). To improve context retrieval, TeleOracle employs a two-stage retriever that incorporates semantic chunking and hybrid keyword and semantic search. Additionally, we expand the context window during inference to enhance the model's performance on open-ended queries. We also employ low-rank adaption for efficient fine-tuning. A thorough analysis of the model's performance indicates that our RAG framework is effective in aligning Phi-2 to the telecom domain in a downstream question and answer (QnA) task, achieving a 30% improvement in accuracy over the base Phi-2 model, reaching an overall accuracy of 81.20%. Notably, we show that our model not only performs on par with the much larger LLMs but also achieves a higher faithfulness score, indicating higher adherence to the retrieved context.
Abstract:Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission, where only information relevant to a specific task is communicated. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and subpar performance. To address this, we propose an information-bottleneck method, named CLAD (contrastive learning and adversarial disentanglement). CLAD leverages contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the lack of reliable and reproducible methods to gain insight into the informativeness and minimality of the encoded feature vectors, we introduce a new technique to compute the information retention index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input, reflecting the minimality of the encoded features. The IRI quantifies the minimality and informativeness of the encoded feature vectors across different task-oriented communication techniques. Our extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of task performance, privacy preservation, and IRI. CLAD achieves a predictive performance improvement of around 2.5-3%, along with a 77-90% reduction in IRI and a 57-76% decrease in adversarial accuracy.
Abstract:By 2025, the internet of things (IoT) is projected to connect over 75 billion devices globally, fundamentally altering how we interact with our environments in both urban and rural settings. However, IoT device security remains challenging, particularly in the authentication process. Traditional cryptographic methods often struggle with the constraints of IoT devices, such as limited computational power and storage. This paper considers physical unclonable functions (PUFs) as robust security solutions, utilizing their inherent physical uniqueness to authenticate devices securely. However, traditional PUF systems are vulnerable to machine learning (ML) attacks and burdened by large datasets. Our proposed solution introduces a lightweight PUF mechanism, called LPUF-AuthNet, combining tandem neural networks (TNN) with a split learning (SL) paradigm. The proposed approach provides scalability, supports mutual authentication, and enhances security by resisting various types of attacks, paving the way for secure integration into future 6G technologies.
Abstract:Recent studies show that large language models (LLMs) struggle with technical standards in telecommunications. We propose a fine-tuned retrieval-augmented generation (RAG) system based on the Phi-2 small language model (SLM) to serve as an oracle for communication networks. Our developed system leverages forward-looking semantic chunking to adaptively determine parsing breakpoints based on embedding similarity, enabling effective processing of diverse document formats. To handle the challenge of multiple similar contexts in technical standards, we employ a re-ranking algorithm to prioritize the most relevant retrieved chunks. Recognizing the limitations of Phi-2's small context window, we implement a recent technique, namely SelfExtend, to expand the context window during inference, which not only boosts the performance but also can accommodate a wider range of user queries and design requirements from customers to specialized technicians. For fine-tuning, we utilize the low-rank adaptation (LoRA) technique to enhance computational efficiency during training and enable effective fine-tuning on small datasets. Our comprehensive experiments demonstrate substantial improvements over existing question-answering approaches in the telecom domain, achieving performance that exceeds larger language models such as GPT-4 (which is about 880 times larger in size). This work presents a novel approach to leveraging SLMs for communication networks, offering a balance of efficiency and performance. This work can serve as a foundation towards agentic language models for networks.
Abstract:This paper explores the integration of active machine learning (ML) for 6G networks, an area that remains under-explored yet holds potential. Unlike passive ML systems, active ML can be made to interact with the network environment. It actively selects informative and representative data points for training, thereby reducing the volume of data needed while accelerating the learning process. While active learning research mainly focuses on data annotation, we call for a network-centric active learning framework that considers both annotation (i.e., what is the label) and data acquisition (i.e., which and how many samples to collect). Moreover, we explore the synergy between generative artificial intelligence (AI) and active learning to overcome existing limitations in both active learning and generative AI. This paper also features a case study on a mmWave throughput prediction problem to demonstrate the practical benefits and improved performance of active learning for 6G networks. Furthermore, we discuss how the implications of active learning extend to numerous 6G network use cases. We highlight the potential of active learning based 6G networks to enhance computational efficiency, data annotation and acquisition efficiency, adaptability, and overall network intelligence. We conclude with a discussion on challenges and future research directions for active learning in 6G networks, including development of novel query strategies, distributed learning integration, and inclusion of human- and machine-in-the-loop learning.
Abstract:This paper proposes a novel framework that leverages large language models (LLMs) to automate curriculum design, thereby enhancing the application of reinforcement learning (RL) in mobile networks. As mobile networks evolve towards the 6G era, managing their increasing complexity and dynamic nature poses significant challenges. Conventional RL approaches often suffer from slow convergence and poor generalization due to conflicting objectives and the large state and action spaces associated with mobile networks. To address these shortcomings, we introduce curriculum learning, a method that systematically exposes the RL agent to progressively challenging tasks, improving convergence and generalization. However, curriculum design typically requires extensive domain knowledge and manual human effort. Our framework mitigates this by utilizing the generative capabilities of LLMs to automate the curriculum design process, significantly reducing human effort while improving the RL agent's convergence and performance. We deploy our approach within a simulated mobile network environment and demonstrate improved RL convergence rates, generalization to unseen scenarios, and overall performance enhancements. As a case study, we consider autonomous coordination and user association in mobile networks. Our obtained results highlight the potential of combining LLM-based curriculum generation with RL for managing next-generation wireless networks, marking a significant step towards fully autonomous network operations.
Abstract:Split learning is a privacy-preserving distributed learning paradigm in which an ML model (e.g., a neural network) is split into two parts (i.e., an encoder and a decoder). The encoder shares so-called latent representation, rather than raw data, for model training. In mobile-edge computing, network functions (such as traffic forecasting) can be trained via split learning where an encoder resides in a user equipment (UE) and a decoder resides in the edge network. Based on the data processing inequality and the information bottleneck (IB) theory, we present a new framework and training mechanism to enable a dynamic balancing of the transmission resource consumption with the informativeness of the shared latent representations, which directly impacts the predictive performance. The proposed training mechanism offers an encoder-decoder neural network architecture featuring multiple modes of complexity-relevance tradeoffs, enabling tunable performance. The adaptability can accommodate varying real-time network conditions and application requirements, potentially reducing operational expenditure and enhancing network agility. As a proof of concept, we apply the training mechanism to a millimeter-wave (mmWave)-enabled throughput prediction problem. We also offer new insights and highlight some challenges related to recurrent neural networks from the perspective of the IB theory. Interestingly, we find a compression phenomenon across the temporal domain of the sequential model, in addition to the compression phase that occurs with the number of training epochs.