Abstract:Foundation deep learning (DL) models are general models, designed to learn general, robust and adaptable representations of their target modality, enabling finetuning across a range of downstream tasks. These models are pretrained on large, unlabeled datasets using self-supervised learning (SSL). Foundation models have demonstrated better generalization than traditional supervised approaches, a critical requirement for wireless communications where the dynamic environment demands model adaptability. In this work, we propose and demonstrate the effectiveness of a Vision Transformer (ViT) as a radio foundation model for spectrogram learning. We introduce a Masked Spectrogram Modeling (MSM) approach to pretrain the ViT in a self-supervised fashion. We evaluate the ViT-based foundation model on two downstream tasks: Channel State Information (CSI)-based Human Activity sensing and Spectrogram Segmentation. Experimental results demonstrate competitive performance to supervised training while generalizing across diverse domains. Notably, the pretrained ViT model outperforms a four-times larger model that is trained from scratch on the spectrogram segmentation task, while requiring significantly less training time, and achieves competitive performance on the CSI-based human activity sensing task. This work demonstrates the effectiveness of ViT with MSM for pretraining as a promising technique for scalable foundation model development in future 6G networks.
Abstract:Foundational deep learning (DL) models are general models, trained on large, diverse, and unlabelled datasets, typically using self-supervised learning techniques have led to significant advancements especially in natural language processing. These pretrained models can be fine-tuned for related downstream tasks, offering faster development and reduced training costs, while often achieving improved performance. In this work, we introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals. Adopting a Convolutional LSTM architecture for efficient spatio-temporal processing, we pretrain the model with an unlabelled radio dataset collected from over-the-air measurements. Subsequently, the pretrained model is fine-tuned for two downstream tasks: spectrum forecasting and segmentation. Experimental results demonstrate that our methodology achieves competitive performance in both forecasting accuracy and segmentation, validating its effectiveness for developing foundational radio models.
Abstract:The industrial Internet of Things (IIoT) under Industry 4.0 heralds an era of interconnected smart devices where data-driven insights and machine learning (ML) fuse to revolutionize manufacturing. A noteworthy development in IIoT is the integration of federated learning (FL), which addresses data privacy and security among devices. FL enables edge sensors, also known as peripheral intelligence units (PIUs) to learn and adapt using their data locally, without explicit sharing of confidential data, to facilitate a collaborative yet confidential learning process. However, the lower memory footprint and computational power of PIUs inherently require deep neural network (DNN) models that have a very compact size. Model compression techniques such as pruning can be used to reduce the size of DNN models by removing unnecessary connections that have little impact on the model's performance, thus making the models more suitable for the limited resources of PIUs. Targeting the notion of compact yet robust DNN models, we propose the integration of iterative magnitude pruning (IMP) of the DNN model being trained in an over-the-air FL (OTA-FL) environment for IIoT. We provide a tutorial overview and also present a case study of the effectiveness of IMP in OTA-FL for an IIoT environment. Finally, we present future directions for enhancing and optimizing these deep compression techniques further, aiming to push the boundaries of IIoT capabilities in acquiring compact yet robust and high-performing DNN models.
Abstract:The open radio access network (O-RAN) architecture supports intelligent network control algorithms as one of its core capabilities. Data-driven applications incorporate such algorithms to optimize radio access network (RAN) functions via RAN intelligent controllers (RICs). Deep reinforcement learning (DRL) algorithms are among the main approaches adopted in the O-RAN literature to solve dynamic radio resource management problems. However, despite the benefits introduced by the O-RAN RICs, the practical adoption of DRL algorithms in real network deployments falls behind. This is primarily due to the slow convergence and unstable performance exhibited by DRL agents upon deployment and when encountering previously unseen network conditions. In this paper, we address these challenges by proposing transfer learning (TL) as a core component of the training and deployment workflows for the DRL-based closed-loop control of O-RAN functionalities. To this end, we propose and design a hybrid TL-aided approach that leverages the advantages of both policy reuse and distillation TL methods to provide safe and accelerated convergence in DRL-based O-RAN slicing. We conduct a thorough experiment that accommodates multiple services, including real VR gaming traffic to reflect practical scenarios of O-RAN slicing. We also propose and implement policy reuse and distillation-aided DRL and non-TL-aided DRL as three separate baselines. The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios, and a 64.6% decrease in reward variance while maintaining fast convergence and enhancing the generalizability compared with the baselines.
Abstract:The success of immersive applications such as virtual reality (VR) gaming and metaverse services depends on low latency and reliable connectivity. To provide seamless user experiences, the open radio access network (O-RAN) architecture and 6G networks are expected to play a crucial role. RAN slicing, a critical component of the O-RAN paradigm, enables network resources to be allocated based on the needs of immersive services, creating multiple virtual networks on a single physical infrastructure. In the O-RAN literature, deep reinforcement learning (DRL) algorithms are commonly used to optimize resource allocation. However, the practical adoption of DRL in live deployments has been sluggish. This is primarily due to the slow convergence and performance instabilities suffered by the DRL agents both upon initial deployment and when there are significant changes in network conditions. In this paper, we investigate the impact of time series forecasting of traffic demands on the convergence of the DRL-based slicing agents. For that, we conduct an exhaustive experiment that supports multiple services including real VR gaming traffic. We then propose a novel forecasting-aided DRL approach and its respective O-RAN practical deployment workflow to enhance DRL convergence. Our approach shows up to 22.8%, 86.3%, and 300% improvements in the average initial reward value, convergence rate, and number of converged scenarios respectively, enhancing the generalizability of the DRL agents compared with the implemented baselines. The results also indicate that our approach is robust against forecasting errors and that forecasting models do not have to be ideal.
Abstract:Automatic modulation classification (AMC) plays a critical role in wireless communications by autonomously classifying signals transmitted over the radio spectrum. Deep learning (DL) techniques are increasingly being used for AMC due to their ability to extract complex wireless signal features. However, DL models are computationally intensive and incur high inference latencies. This paper proposes the application of early exiting (EE) techniques for DL models used for AMC to accelerate inference. We present and analyze four early exiting architectures and a customized multi-branch training algorithm for this problem. Through extensive experimentation, we show that signals with moderate to high signal-to-noise ratios (SNRs) are easier to classify, do not require deep architectures, and can therefore leverage the proposed EE architectures. Our experimental results demonstrate that EE techniques can significantly reduce the inference speed of deep neural networks without sacrificing classification accuracy. We also thoroughly study the trade-off between classification accuracy and inference time when using these architectures. To the best of our knowledge, this work represents the first attempt to apply early exiting methods to AMC, providing a foundation for future research in this area.