Abstract:In response to the continuing research interest in computational semantic analysis, we have proposed a new task for SemEval-2010: multi-way classification of mutually exclusive semantic relations between pairs of nominals. The task is designed to compare different approaches to the problem and to provide a standard testbed for future research. In this paper, we define the task, describe the creation of the datasets, and discuss the results of the participating 28 systems submitted by 10 teams.
Abstract:In this paper, we describe SemEval-2013 Task 4: the definition, the data, the evaluation and the results. The task is to capture some of the meaning of English noun compounds via paraphrasing. Given a two-word noun compound, the participating system is asked to produce an explicitly ranked list of its free-form paraphrases. The list is automatically compared and evaluated against a similarly ranked list of paraphrases proposed by human annotators, recruited and managed through Amazon's Mechanical Turk. The comparison of raw paraphrases is sensitive to syntactic and morphological variation. The "gold" ranking is based on the relative popularity of paraphrases among annotators. To make the ranking more reliable, highly similar paraphrases are grouped, so as to downplay superficial differences in syntax and morphology. Three systems participated in the task. They all beat a simple baseline on one of the two evaluation measures, but not on both measures. This shows that the task is difficult.
Abstract:We investigate what distinguishes reported dreams from other personal narratives. The continuity hypothesis, stemming from psychological dream analysis work, states that most dreams refer to a person's daily life and personal concerns, similar to other personal narratives such as diary entries. Differences between the two texts may reveal the linguistic markers of dream text, which could be the basis for new dream analysis work and for the automatic detection of dream descriptions. We used three text analytics methods: text classification, topic modeling, and text coherence analysis, and applied these methods to a balanced set of texts representing dreams, diary entries, and other personal stories. We observed that dream texts could be distinguished from other personal narratives nearly perfectly, mostly based on the presence of uncertainty markers and descriptions of scenes. Important markers for non-dream narratives are specific time expressions and conversational expressions. Dream texts also exhibit a lower discourse coherence than other personal narratives.