Abstract:Efficiently managing papillary thyroid microcarcinoma (PTMC) while minimizing patient discomfort poses a significant clinical challenge. Radiofrequency ablation (RFA) offers a less invasive alternative to surgery and radiation therapy for PTMC treatment, characterized by shorter recovery times and reduced pain. As an image-guided procedure, RFA generates localized heat by delivering high-frequency electrical currents through electrodes to the targeted area under ultrasound imaging guidance. However, the precision and skill required by operators for accurate guidance using current ultrasound B-mode imaging technologies remain significant challenges. To address these challenges, we develop a novel AI segmentation model, E2E-Swin-Unet++. This model enhances ultrasound B-mode imaging by enabling real-time identification and segmentation of PTMC tumors and monitoring of the region of interest for precise targeting during treatment. E2E-Swin- Unet++ is an advanced end-to-end extension of the Swin-Unet architecture, incorporating thyroid region information to minimize the risk of false PTMC segmentation while providing fast inference capabilities. Experimental results on a real clinical RFA dataset demonstrate the superior performance of E2E-Swin-Unet++ compared to related models. Our proposed solution significantly improves the precision and control of RFA ablation treatment by enabling real-time identification and segmentation of PTMC margins during the procedure.
Abstract:Large Language Models (LLMs), with their increasing depth and number of parameters, have demonstrated outstanding performance across a variety of natural language processing tasks. However, this growth in scale leads to increased computational demands, particularly during inference and fine-tuning. To address these challenges, we introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers. Our analysis reveals that many inner layers in LLMs, especially larger ones, exhibit highly similar attention matrices. By exploiting this similarity, EchoAtt enables the sharing of attention matrices in less critical layers, significantly reducing computational requirements without compromising performance. We incorporate this approach within a knowledge distillation setup, where a pre-trained teacher model guides the training of a smaller student model. The student model selectively shares attention matrices in layers with high similarity while inheriting key parameters from the teacher. Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15\%, training speed by 25\%, and reduces the number of parameters by approximately 4\%, all while improving zero-shot performance. These findings highlight the potential of attention matrix sharing to enhance the efficiency of LLMs, making them more practical for real-time and resource-limited applications.
Abstract:Finetuning large language models requires huge GPU memory, restricting the choice to acquire Larger models. While the quantized version of the Low-Rank Adaptation technique, named QLoRA, significantly alleviates this issue, finding the efficient LoRA rank is still challenging. Moreover, QLoRA is trained on a pre-defined rank and, therefore, cannot be reconfigured for its lower ranks without requiring further fine-tuning steps. This paper proposes QDyLoRA -Quantized Dynamic Low-Rank Adaptation-, as an efficient quantization approach for dynamic low-rank adaptation. Motivated by Dynamic LoRA, QDyLoRA is able to efficiently finetune LLMs on a set of pre-defined LoRA ranks. QDyLoRA enables fine-tuning Falcon-40b for ranks 1 to 64 on a single 32 GB V100-GPU through one round of fine-tuning. Experimental results show that QDyLoRA is competitive to QLoRA and outperforms when employing its optimal rank.
Abstract:We employ a tool-interacting divide-and-conquer strategy enabling large language models (LLMs) to answer complex multimodal multi-hop questions. In particular, we harness the power of large language models to divide a given multimodal multi-hop question into unimodal single-hop sub-questions to be answered by the appropriate tool from a predefined set of tools. After all corresponding tools provide the LLM with their answers, the LLM generates the next relevant unimodal single-hop question. To increase the reasoning ability of LLMs, we prompt chatGPT to generate a tool-interacting divide-and-conquer dataset. This dataset is then used to efficiently finetune the corresponding LLM. To assess the effectiveness of this approach, we conduct an evaluation on two recently introduced complex question-answering datasets. The experimental analysis demonstrate substantial improvements over existing state-of-the-art solutions, indicating the efficacy and generality of our strategy