Abstract:Maritime environmental sensing requires overcoming challenges from complex conditions such as harsh weather, platform perturbations, large dynamic objects, and the requirement for long detection ranges. While cameras and LiDAR are commonly used in ground vehicle navigation, their applicability in maritime settings is limited by range constraints and hardware maintenance issues. Radar sensors, however, offer robust long-range detection capabilities and resilience to physical contamination from weather and saline conditions, making it a powerful sensor for maritime navigation. Among various radar types, X-band radar (e.g., marine radar) is widely employed for maritime vessel navigation, providing effective long-range detection essential for situational awareness and collision avoidance. Nevertheless, it exhibits limitations during berthing operations where close-range object detection is critical. To address this shortcoming, we incorporate W-band radar (e.g., Navtech imaging radar), which excels in detecting nearby objects with a higher update rate. We present a comprehensive maritime sensor dataset featuring multi-range detection capabilities. This dataset integrates short-range LiDAR data, medium-range W-band radar data, and long-range X-band radar data into a unified framework. Additionally, it includes object labels for oceanic object detection usage, derived from radar and stereo camera images. The dataset comprises seven sequences collected from diverse regions with varying levels of estimation difficulty, ranging from easy to challenging, and includes common locations suitable for global localization tasks. This dataset serves as a valuable resource for advancing research in place recognition, odometry estimation, SLAM, object detection, and dynamic object elimination within maritime environments. Dataset can be found in following link: https://sites.google.com/view/rpmmoana
Abstract:The interest in single-chip mmWave Radar is driven by their compact form factor, cost-effectiveness, and robustness under harsh environmental conditions. Despite its promising attributes, the principal limitation of mmWave radar lies in its capacity for autonomous yaw rate estimation. Conventional solutions have often resorted to integrating inertial measurement unit (IMU) or deploying multiple radar units to circumvent this shortcoming. This paper introduces an innovative methodology for two-dimensional ego-motion estimation, focusing on yaw rate deduction, utilizing solely mmWave radar sensors. By applying a weighted Iterated Closest Point (ICP) algorithm to register processed points derived from heatmap data, our method facilitates 2D ego-motion estimation devoid of prior information. Through experimental validation, we verified the effectiveness and promise of our technique for ego-motion estimation using exclusively radar data.
Abstract:The integration of sensor data is crucial in the field of robotics to take full advantage of the various sensors employed. One critical aspect of this integration is determining the extrinsic calibration parameters, such as the relative transformation, between each sensor. The use of data fusion between complementary sensors, such as radar and LiDAR, can provide significant benefits, particularly in harsh environments where accurate depth data is required. However, noise included in radar sensor data can make the estimation of extrinsic calibration challenging. To address this issue, we present a novel framework for the extrinsic calibration of radar and LiDAR sensors, utilizing CycleGAN as amethod of image-to-image translation. Our proposed method employs translating radar bird-eye-view images into LiDAR-style images to estimate the 3-DOF extrinsic parameters. The use of image registration techniques, as well as deskewing based on sensor odometry and B-spline interpolation, is employed to address the rolling shutter effect commonly present in spinning sensors. Our method demonstrates a notable improvement in extrinsic calibration compared to filter-based methods using the MulRan dataset.
Abstract:Maritime radars are prevalently adopted to capture the vessel's omnidirectional data as imagery. Nevertheless, inherent challenges persist with marine radars, including limited frequency, suboptimal resolution, and indeterminate detections. Additionally, the scarcity of discernible landmarks in the vast marine expanses remains a challenge, resulting in consecutive scenes that often lack matching feature points. In this context, we introduce a resilient maritime radar scan representation LodeStar, and an enhanced feature extraction technique tailored for marine radar applications. Moreover, we embark on estimating marine radar odometry utilizing a semi-direct approach. LodeStar-based approach markedly attenuates the errors in odometry estimation, and our assertion is corroborated through meticulous experimental validation.
Abstract:Due to the robustness in sensing, radar has been highlighted, overcoming harsh weather conditions such as fog and heavy snow. In this paper, we present a novel radar-only place recognition that measures the similarity score by utilizing Radon-transformed sinogram images and cross-correlation in frequency domain. Doing so achieves rigid transform invariance during place recognition, while ignoring the effects of radar multipath and ring noises. In addition, we compute the radar similarity distance using mutable threshold to mitigate variability of the similarity score, and reduce the time complexity of processing a copious radar data with hierarchical retrieval. We demonstrate the matching performance for both intra-session loop-closure detection and global place recognition using a publicly available imaging radar datasets. We verify reliable performance compared to existing stable radar place recognition method. Furthermore, codes for the proposed imaging radar place recognition is released for community.
Abstract:We survey the current state of millimeterwave (mmWave) radar applications in robotics with a focus on unique capabilities, and discuss future opportunities based on the state of the art. Frequency Modulated Continuous Wave (FMCW) mmWave radars operating in the 76--81GHz range are an appealing alternative to lidars, cameras and other sensors operating in the near visual spectrum. Radar has been made more widely available in new packaging classes, more convenient for robotics and its longer wavelengths have the ability to bypass visual clutter such as fog, dust, and smoke. We begin by covering radar principles as they relate to robotics. We then review the relevant new research across a broad spectrum of robotics applications beginning with motion estimation, localization, and mapping. We then cover object detection and classification, and then close with an analysis of current datasets and calibration techniques that provide entry points into radar research.