Abstract:We present \textbf{Disco4D}, a novel Gaussian Splatting framework for 4D human generation and animation from a single image. Different from existing methods, Disco4D distinctively disentangles clothings (with Gaussian models) from the human body (with SMPL-X model), significantly enhancing the generation details and flexibility. It has the following technical innovations. \textbf{1)} Disco4D learns to efficiently fit the clothing Gaussians over the SMPL-X Gaussians. \textbf{2)} It adopts diffusion models to enhance the 3D generation process, \textit{e.g.}, modeling occluded parts not visible in the input image. \textbf{3)} It learns an identity encoding for each clothing Gaussian to facilitate the separation and extraction of clothing assets. Furthermore, Disco4D naturally supports 4D human animation with vivid dynamics. Extensive experiments demonstrate the superiority of Disco4D on 4D human generation and animation tasks. Our visualizations can be found in \url{https://disco-4d.github.io/}.
Abstract:Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods still depend largely on confined training datasets. In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone and training with up to 4.5M instances from diverse data sources. With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments. 1) For the data scaling, we perform a systematic investigation on 32 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. 2) For the model scaling, we take advantage of vision transformers to study the scaling law of model sizes in EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models, allowing them to achieve further performance boosts. Notably, our foundation model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm PVE), and EHF (62.3 mm PVE without finetuning).
Abstract:3D human pose and shape estimation (a.k.a. "human mesh recovery") has achieved substantial progress. Researchers mainly focus on the development of novel algorithms, while less attention has been paid to other critical factors involved. This could lead to less optimal baselines, hindering the fair and faithful evaluations of newly designed methodologies. To address this problem, this work presents the first comprehensive benchmarking study from three under-explored perspectives beyond algorithms. 1) Datasets. An analysis on 31 datasets reveals the distinct impacts of data samples: datasets featuring critical attributes (i.e. diverse poses, shapes, camera characteristics, backbone features) are more effective. Strategical selection and combination of high-quality datasets can yield a significant boost to the model performance. 2) Backbones. Experiments with 10 backbones, ranging from CNNs to transformers, show the knowledge learnt from a proximity task is readily transferable to human mesh recovery. 3) Training strategies. Proper augmentation techniques and loss designs are crucial. With the above findings, we achieve a PA-MPJPE of 47.3 mm on the 3DPW test set with a relatively simple model. More importantly, we provide strong baselines for fair comparisons of algorithms, and recommendations for building effective training configurations in the future. Codebase is available at http://github.com/smplbody/hmr-benchmarks