Abstract:Magnitude Pruning is a staple lightweight network design method which seeks to remove connections with the smallest magnitude. This process is either achieved in a structured or unstructured manner. While structured pruning allows reaching high efficiency, unstructured one is more flexible and leads to better accuracy, but this is achieved at the expense of low computational performance. In this paper, we devise a novel coarse-to-fine (CTF) method that gathers the advantages of structured and unstructured pruning while discarding their inconveniences to some extent. Our method relies on a novel CTF parametrization that models the mask of each connection as the Hadamard product involving four parametrizations which capture channel-wise, column-wise, row-wise and entry-wise pruning respectively. Hence, fine-grained pruning is enabled only when the coarse-grained one is disabled, and this leads to highly efficient networks while being effective. Extensive experiments conducted on the challenging task of skeleton-based recognition, using the standard SBU and FPHA datasets, show the clear advantage of our CTF approach against different baselines as well as the related work.
Abstract:Deep neural networks (DNNs) are nowadays witnessing a major success in solving many pattern recognition tasks including skeleton-based classification. The deployment of DNNs on edge-devices, endowed with limited time and memory resources, requires designing lightweight and efficient variants of these networks. Pruning is one of the lightweight network design techniques that operate by removing unnecessary network parts, in a structured or an unstructured manner, including individual weights, neurons or even entire channels. Nonetheless, structured and unstructured pruning methods, when applied separately, may either be inefficient or ineffective. In this paper, we devise a novel semi-structured method that discards the downsides of structured and unstructured pruning while gathering their upsides to some extent. The proposed solution is based on a differentiable cascaded parametrization which combines (i) a band-stop mechanism that prunes weights depending on their magnitudes, (ii) a weight-sharing parametrization that prunes connections either individually or group-wise, and (iii) a gating mechanism which arbitrates between different group-wise and entry-wise pruning. All these cascaded parametrizations are built upon a common latent tensor which is trained end-to-end by minimizing a classification loss and a surrogate tensor rank regularizer. Extensive experiments, conducted on the challenging tasks of action and hand-gesture recognition, show the clear advantage of our proposed semi-structured pruning approach against both structured and unstructured pruning, when taken separately, as well as the related work.
Abstract:Few-shot detection is a major task in pattern recognition which seeks to localize objects using models trained with few labeled data. One of the mainstream few-shot methods is transfer learning which consists in pretraining a detection model in a source domain prior to its fine-tuning in a target domain. However, it is challenging for fine-tuned models to effectively identify new classes in the target domain, particularly when the underlying labeled training data are scarce. In this paper, we devise a novel sparse context transformer (SCT) that effectively leverages object knowledge in the source domain, and automatically learns a sparse context from only few training images in the target domain. As a result, it combines different relevant clues in order to enhance the discrimination power of the learned detectors and reduce class confusion. We evaluate the proposed method on two challenging few-shot object detection benchmarks, and empirical results show that the proposed method obtains competitive performance compared to the related state-of-the-art.
Abstract:In this paper, we devise a novel lightweight Graph Convolutional Network (GCN) design dubbed as Multi-Rate Magnitude Pruning (MRMP) that jointly trains network topology and weights. Our method is variational and proceeds by aligning the weight distribution of the learned networks with an a priori distribution. In the one hand, this allows implementing any fixed pruning rate, and also enhancing the generalization performances of the designed lightweight GCNs. In the other hand, MRMP achieves a joint training of multiple GCNs, on top of shared weights, in order to extrapolate accurate networks at any targeted pruning rate without retraining their weights. Extensive experiments conducted on the challenging task of skeleton-based recognition show a substantial gain of our lightweight GCNs particularly at very high pruning regimes.
Abstract:We introduce a novel interactive satellite image change detection algorithm based on active learning. The proposed method is iterative and consists in frugally probing the user (oracle) about the labels of the most critical images, and according to the oracle's annotations, it updates change detection results. First, we consider a probabilistic framework which assigns to each unlabeled sample a relevance measure modeling how critical is that sample when training change detection functions. We obtain these relevance measures by minimizing an objective function mixing diversity, representativity and uncertainty. These criteria when combined allow exploring different data modes and also refining change detections. Then, we further explore the potential of this objective function, by considering a reinforcement learning approach that finds the best combination of diversity, representativity and uncertainty as well as display-sizes through active learning iterations, leading to better generalization as shown through experiments in interactive satellite image change detection.
Abstract:Self-supervised monocular depth estimation methods aim to be used in critical applications such as autonomous vehicles for environment analysis. To circumvent the potential imperfections of these approaches, a quantification of the prediction confidence is crucial to guide decision-making systems that rely on depth estimation. In this paper, we propose MonoProb, a new unsupervised monocular depth estimation method that returns an interpretable uncertainty, which means that the uncertainty reflects the expected error of the network in its depth predictions. We rethink the stereo or the structure-from-motion paradigms used to train unsupervised monocular depth models as a probabilistic problem. Within a single forward pass inference, this model provides a depth prediction and a measure of its confidence, without increasing the inference time. We then improve the performance on depth and uncertainty with a novel self-distillation loss for which a student is supervised by a pseudo ground truth that is a probability distribution on depth output by a teacher. To quantify the performance of our models we design new metrics that, unlike traditional ones, measure the absolute performance of uncertainty predictions. Our experiments highlight enhancements achieved by our method on standard depth and uncertainty metrics as well as on our tailored metrics. https://github.com/CEA-LIST/MonoProb
Abstract:Change detection in satellite imagery seeks to find occurrences of targeted changes in a given scene taken at different instants. This task has several applications ranging from land-cover mapping, to anthropogenic activity monitory as well as climate change and natural hazard damage assessment. However, change detection is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we devise a novel algorithm for change detection based on active learning. The proposed method is based on a question and answer model that probes an oracle (user) about the relevance of changes only on a small set of critical images (referred to as virtual exemplars), and according to oracle's responses updates deep neural network (DNN) classifiers. The main contribution resides in a novel adversarial model that allows learning the most representative, diverse and uncertain virtual exemplars (as inverted preimages of the trained DNNs) that challenge (the most) the trained DNNs, and this leads to a better re-estimate of these networks in the subsequent iterations of active learning. Experiments show the out-performance of our proposed deep-net inversion against the related work.
Abstract:Magnitude pruning is one of the mainstream methods in lightweight architecture design whose goal is to extract subnetworks with the largest weight connections. This method is known to be successful, but under very high pruning regimes, it suffers from topological inconsistency which renders the extracted subnetworks disconnected, and this hinders their generalization ability. In this paper, we devise a novel magnitude pruning method that allows extracting subnetworks while guarantying their topological consistency. The latter ensures that only accessible and co-accessible -- impactful -- connections are kept in the resulting lightweight networks. Our solution is based on a novel reparametrization and two supervisory bi-directional networks which implement accessibility/co-accessibility and guarantee that only connected subnetworks will be selected during training. This solution allows enhancing generalization significantly, under very high pruning regimes, as corroborated through extensive experiments, involving graph convolutional networks, on the challenging task of skeleton-based action recognition.
Abstract:Graph convolutional networks (GCNs) are nowadays becoming mainstream in solving many image processing tasks including skeleton-based recognition. Their general recipe consists in learning convolutional and attention layers that maximize classification performances. With multi-head attention, GCNs are highly accurate but oversized, and their deployment on edge devices requires their pruning. Among existing methods, magnitude pruning (MP) is relatively effective but its design is clearly suboptimal as network topology selection and weight retraining are achieved independently. In this paper, we devise a novel lightweight GCN design dubbed as Probabilistic Magnitude Pruning (PMP) that jointly trains network topology and weights. Our method is variational and proceeds by aligning the weight distribution of the learned networks with an a priori distribution. This allows implementing any fixed pruning rate, and also enhancing the generalization performances of the designed lightweight GCNs. Extensive experiments conducted on the challenging task of skeleton-based recognition show a substantial gain of our lightweight GCNs particularly at very high pruning regimes.
Abstract:Satellite image change detection aims at finding occurrences of targeted changes in a given scene taken at different instants. This task is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we investigate satellite image change detection using active learning. Our method is interactive and relies on a question and answer model which asks the oracle (user) questions about the most informative display (dubbed as virtual exemplars), and according to the user's responses, updates change detections. The main contribution of our method consists in a novel adversarial model that allows frugally probing the oracle with only the most representative, diverse and uncertain virtual exemplars. The latter are learned to challenge the most the trained change decision criteria which ultimately leads to a better re-estimate of these criteria in the following iterations of active learning. Conducted experiments show the out-performance of our proposed adversarial display model against other display strategies as well as the related work.