Abstract:Multi-label classification is a challenging task in pattern recognition. Many deep learning methods have been proposed and largely enhanced classification performance. However, most of the existing sophisticated methods ignore context in the models' learning process. Since context may provide additional cues to the learned models, it may significantly boost classification performances. In this work, we make full use of context information (namely geometrical structure of images) in order to learn better context-aware similarities (a.k.a. kernels) between images. We reformulate context-aware kernel design as a feed-forward network that outputs explicit kernel mapping features. Our obtained context-aware kernel network further leverages multiple orders of patch neighbors within different distances, resulting into a more discriminating Deep Multi-order Context-aware Kernel Network (DMCKN) for multi-label classification. We evaluate the proposed method on the challenging Corel5K and NUS-WIDE benchmarks, and empirical results show that our method obtains competitive performances against the related state-of-the-art, and both quantitative and qualitative performances corroborate its effectiveness and superiority for multi-label image classification.
Abstract:Human parsing is for pixel-wise human semantic understanding. As human bodies are underlying hierarchically structured, how to model human structures is the central theme in this task. Focusing on this, we seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures. In particular, we provide following two contributions. First, three kinds of part relations, i.e., decomposition, composition, and dependency, are, for the first time, completely and precisely described by three distinct relation networks. This is in stark contrast to previous parsers, which only focus on a portion of the relations and adopt a type-agnostic relation modeling strategy. More expressive relation information can be captured by explicitly imposing the parameters in the relation networks to satisfy the specific characteristics of different relations. Second, previous parsers largely ignore the need for an approximation algorithm over the loopy human hierarchy, while we instead address an iterative reasoning process, by assimilating generic message-passing networks with their edge-typed, convolutional counterparts. With these efforts, our parser lays the foundation for more sophisticated and flexible human relation patterns of reasoning. Comprehensive experiments on five datasets demonstrate that our parser sets a new state-of-the-art on each.