Abstract:The generalization and performance of stereo matching networks are limited due to the domain gap of the existing synthetic datasets and the sparseness of GT labels in the real datasets. In contrast, monocular depth estimation has achieved significant advancements, benefiting from large-scale depth datasets and self-supervised strategies. To bridge the performance gap between monocular depth estimation and stereo matching, we propose leveraging monocular knowledge transfer to enhance stereo matching, namely Mono2Stereo. We introduce knowledge transfer with a two-stage training process, comprising synthetic data pre-training and real-world data fine-tuning. In the pre-training stage, we design a data generation pipeline that synthesizes stereo training data from monocular images. This pipeline utilizes monocular depth for warping and novel view synthesis and employs our proposed Edge-Aware (EA) inpainting module to fill in missing contents in the generated images. In the fine-tuning stage, we introduce a Sparse-to-Dense Knowledge Distillation (S2DKD) strategy encouraging the distributions of predictions to align with dense monocular depths. This strategy mitigates issues with edge blurring in sparse real-world labels and enhances overall consistency. Experimental results demonstrate that our pre-trained model exhibits strong zero-shot generalization capabilities. Furthermore, domain-specific fine-tuning using our pre-trained model and S2DKD strategy significantly increments in-domain performance. The code will be made available soon.
Abstract:With the rising demand for high-resolution (HR) images, No-Reference Image Quality Assessment (NR-IQA) gains more attention, as it can ecaluate image quality in real-time on mobile devices and enhance user experience. However, existing NR-IQA methods often resize or crop the HR images into small resolution, which leads to a loss of important details. And most of them are of high computational complexity, which hinders their application on mobile devices due to limited computational resources. To address these challenges, we propose MobileIQA, a novel approach that utilizes lightweight backbones to efficiently assess image quality while preserving image details through high-resolution input. MobileIQA employs the proposed multi-view attention learning (MAL) module to capture diverse opinions, simulating subjective opinions provided by different annotators during the dataset annotation process. The model uses a teacher model to guide the learning of a student model through knowledge distillation. This method significantly reduces computational complexity while maintaining high performance. Experiments demonstrate that MobileIQA outperforms novel IQA methods on evaluation metrics and computational efficiency. The code is available at https://github.com/chencn2020/MobileIQA.
Abstract:Visible and infrared image fusion (VIF) aims to combine information from visible and infrared images into a single fused image. Previous VIF methods usually employ a color space transformation to keep the hue and saturation from the original visible image. However, for fast VIF methods, this operation accounts for the majority of the calculation and is the bottleneck preventing faster processing. In this paper, we propose a fast fusion method, FCDFusion, with little color deviation. It preserves color information without color space transformations, by directly operating in RGB color space. It incorporates gamma correction at little extra cost, allowing color and contrast to be rapidly improved. We regard the fusion process as a scaling operation on 3D color vectors, greatly simplifying the calculations. A theoretical analysis and experiments show that our method can achieve satisfactory results in only 7 FLOPs per pixel. Compared to state-of-the-art fast, color-preserving methods using HSV color space, our method provides higher contrast at only half of the computational cost. We further propose a new metric, color deviation, to measure the ability of a VIF method to preserve color. It is specifically designed for VIF tasks with color visible-light images, and overcomes deficiencies of existing VIF metrics used for this purpose. Our code is available at https://github.com/HeasonLee/FCDFusion.