Abstract:Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, NLP based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely-used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
Abstract:Medical image recognition often faces the problem of insufficient data in practical applications. Image recognition and processing under few-shot conditions will produce overfitting, low recognition accuracy, low reliability and insufficient robustness. It is often the case that the difference of characteristics is subtle, and the recognition is affected by perspectives, background, occlusion and other factors, which increases the difficulty of recognition. Furthermore, in fine-grained images, the few-shot problem leads to insufficient useful feature information in the images. Considering the characteristics of few-shot and fine-grained image recognition, this study has established a recognition model based on attention and Siamese neural network. Aiming at the problem of few-shot samples, a Siamese neural network suitable for classification model is proposed. The Attention-Based neural network is used as the main network to improve the classification effect. Covid- 19 lung samples have been selected for testing the model. The results show that the less the number of image samples are, the more obvious the advantage shows than the ordinary neural network.
Abstract:Complex-valued neural networks (CVNNs) have been widely applied to various fields, especially signal processing and image recognition. However, few works focus on the generalization of CVNNs, albeit it is vital to ensure the performance of CVNNs on unseen data. This paper is the first work that proves a generalization bound for the complex-valued neural network. The bound scales with the spectral complexity, the dominant factor of which is the spectral norm product of weight matrices. Further, our work provides a generalization bound for CVNNs when training data is sequential, which is also affected by the spectral complexity. Theoretically, these bounds are derived via Maurey Sparsification Lemma and Dudley Entropy Integral. Empirically, we conduct experiments by training complex-valued convolutional neural networks on different datasets: MNIST, FashionMNIST, CIFAR-10, CIFAR-100, Tiny ImageNet, and IMDB. Spearman's rank-order correlation coefficients and the corresponding p values on these datasets give strong proof that the spectral complexity of the network, measured by the weight matrices spectral norm product, has a statistically significant correlation with the generalization ability.