Abstract:Large Language Models (LLMs) have made significant strides in natural language processing, and a precise understanding of the internal mechanisms driving their success is essential. We regard LLMs as transforming embeddings via a discrete, coupled, nonlinear, dynamical system in high dimensions. This perspective motivates tracing the trajectories of individual tokens as they pass through transformer blocks, and linearizing the system along these trajectories through their Jacobian matrices. In our analysis of 38 openly available LLMs, we uncover the alignment of top left and right singular vectors of Residual Jacobians, as well as the emergence of linearity and layer-wise exponential growth. Notably, we discover that increased alignment $\textit{positively correlates}$ with model performance. Metrics evaluated post-training show significant improvement in comparison to measurements made with randomly initialized weights, highlighting the significant effects of training in transformers. These findings reveal a remarkable level of regularity that has previously been overlooked, reinforcing the dynamical interpretation and paving the way for deeper understanding and optimization of LLM architectures.
Abstract:Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.
Abstract:This work highlights a critical shortcoming in text-based Large Language Models (LLMs) used for human-robot interaction, demonstrating that text alone as a conversation modality falls short in such applications. While LLMs excel in processing text in these human conversations, they struggle with the nuances of verbal instructions in scenarios like social navigation, where ambiguity and uncertainty can erode trust in robotic and other AI systems. We can address this shortcoming by moving beyond text and additionally focusing on the paralinguistic features of these audio responses. These features are the aspects of spoken communication that do not involve the literal wording (lexical content) but convey meaning and nuance through how something is said. We present "Beyond Text"; an approach that improves LLM decision-making by integrating audio transcription along with a subsection of these features, which focus on the affect and more relevant in human-robot conversations. This approach not only achieves a 70.26% winning rate, outperforming existing LLMs by 48.30%, but also enhances robustness against token manipulation adversarial attacks, highlighted by a 22.44% less decrease ratio than the text-only language model in winning rate. "Beyond Text" marks an advancement in social robot navigation and broader Human-Robot interactions, seamlessly integrating text-based guidance with human-audio-informed language models.