Abstract:Neural Architecture Search (NAS) has proven effective in discovering new Convolutional Neural Network (CNN) architectures, particularly for scenarios with well-defined accuracy optimization goals. However, previous approaches often involve time-consuming training on super networks or intensive architecture sampling and evaluations. Although various zero-cost proxies correlated with CNN model accuracy have been proposed for efficient architecture search without training, their lack of hardware consideration makes it challenging to target highly resource-constrained edge devices such as microcontroller units (MCUs). To address these challenges, we introduce MONAS, a novel hardware-aware zero-shot NAS framework specifically designed for MCUs in edge computing. MONAS incorporates hardware optimality considerations into the search process through our proposed MCU hardware latency estimation model. By combining this with specialized performance indicators (proxies), MONAS identifies optimal neural architectures without incurring heavy training and evaluation costs, optimizing for both hardware latency and accuracy under resource constraints. MONAS achieves up to a 1104x improvement in search efficiency over previous work targeting MCUs and can discover CNN models with over 3.23x faster inference on MCUs while maintaining similar accuracy compared to more general NAS approaches.
Abstract:Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
Abstract:Neural architecture search (NAS) is an effective method for discovering new convolutional neural network (CNN) architectures. However, existing approaches often require time-consuming training or intensive sampling and evaluations. Zero-shot NAS aims to create training-free proxies for architecture performance prediction. However, existing proxies have suboptimal performance, and are often outperformed by simple metrics such as model parameter counts or the number of floating-point operations. Besides, existing model-based proxies cannot be generalized to new search spaces with unseen new types of operators without golden accuracy truth. A universally optimal proxy remains elusive. We introduce TG-NAS, a novel model-based universal proxy that leverages a transformer-based operator embedding generator and a graph convolution network (GCN) to predict architecture performance. This approach guides neural architecture search across any given search space without the need of retraining. Distinct from other model-based predictor subroutines, TG-NAS itself acts as a zero-cost (ZC) proxy, guiding architecture search with advantages in terms of data independence, cost-effectiveness, and consistency across diverse search spaces. Our experiments showcase its advantages over existing proxies across various NAS benchmarks, suggesting its potential as a foundational element for efficient architecture search. TG-NAS achieves up to 300X improvements in search efficiency compared to previous SOTA ZC proxy methods. Notably, it discovers competitive models with 93.75% CIFAR-10 accuracy on the NAS-Bench-201 space and 74.5% ImageNet top-1 accuracy on the DARTS space.
Abstract:Neural Architecture Search (NAS) effectively discovers new Convolutional Neural Network (CNN) architectures, particularly for accuracy optimization. However, prior approaches often require resource-intensive training on super networks or extensive architecture evaluations, limiting practical applications. To address these challenges, we propose MicroNAS, a hardware-aware zero-shot NAS framework designed for microcontroller units (MCUs) in edge computing. MicroNAS considers target hardware optimality during the search, utilizing specialized performance indicators to identify optimal neural architectures without high computational costs. Compared to previous works, MicroNAS achieves up to 1104x improvement in search efficiency and discovers models with over 3.23x faster MCU inference while maintaining similar accuracy
Abstract:Capturing and preserving motion semantics is essential to motion retargeting between animation characters. However, most of the previous works neglect the semantic information or rely on human-designed joint-level representations. Here, we present a novel Semantics-aware Motion reTargeting (SMT) method with the advantage of vision-language models to extract and maintain meaningful motion semantics. We utilize a differentiable module to render 3D motions. Then the high-level motion semantics are incorporated into the motion retargeting process by feeding the vision-language model with the rendered images and aligning the extracted semantic embeddings. To ensure the preservation of fine-grained motion details and high-level semantics, we adopt a two-stage pipeline consisting of skeleton-aware pre-training and fine-tuning with semantics and geometry constraints. Experimental results show the effectiveness of the proposed method in producing high-quality motion retargeting results while accurately preserving motion semantics. Project page can be found at https://sites.google.com/view/smtnet.