Abstract:Learning graph structures from smooth signals is a significant problem in data science and engineering. A common challenge in real-world scenarios is the availability of only partially observed nodes. While some studies have considered hidden nodes and proposed various optimization frameworks, existing methods often lack the practical efficiency needed for large-scale networks or fail to provide theoretical convergence guarantees. In this paper, we address the problem of inferring network topologies from smooth signals with partially observed nodes. We propose a first-order algorithmic framework that includes two variants: one based on column sparsity regularization and the other on a low-rank constraint. We establish theoretical convergence guarantees and demonstrate the linear convergence rate of our algorithms. Extensive experiments on both synthetic and real-world data show that our results align with theoretical predictions, exhibiting not only linear convergence but also superior speed compared to existing methods. To the best of our knowledge, this is the first work to propose a first-order algorithmic framework for inferring network structures from smooth signals under partial observability, offering both guaranteed linear convergence and practical effectiveness for large-scale networks.
Abstract:Using artificial intelligent (AI) to re-design and enhance the current wireless communication system is a promising pathway for the future sixth-generation (6G) wireless network. The performance of AI-enabled wireless communication depends heavily on the quality of wireless air-interface data. Although there are various approaches to data quality assessment (DQA) for different applications, none has been designed for wireless air-interface data. In this paper, we propose a DQA framework to measure the quality of wireless air-interface data from three aspects: similarity, diversity, and completeness. The similarity measures how close the considered datasets are in terms of their statistical distributions; the diversity measures how well-rounded a dataset is, while the completeness measures to what degree the considered dataset satisfies the required performance metrics in an application scenario. The proposed framework can be applied to various types of wireless air-interface data, such as channel state information (CSI), signal-to-interference-plus-noise ratio (SINR), reference signal received power (RSRP), etc. For simplicity, the validity of our proposed DQA framework is corroborated by applying it to CSI data and using similarity and diversity metrics to improve CSI compression and recovery in Massive MIMO systems.