Abstract:The purpose of the Session-Based Recommendation System is to predict the user's next click according to the previous session sequence. The current studies generally learn user preferences according to the transitions of items in the user's session sequence. However, other effective information in the session sequence, such as user profiles, are largely ignored which may lead to the model unable to learn the user's specific preferences. In this paper, we propose a heterogeneous graph neural network-based session recommendation method, named SR-HetGNN, which can learn session embeddings by heterogeneous graph neural network (HetGNN), and capture the specific preferences of anonymous users. Specifically, SR-HetGNN first constructs heterogeneous graphs containing various types of nodes according to the session sequence, which can capture the dependencies among items, users, and sessions. Second, HetGNN captures the complex transitions between items and learns the item embeddings containing user information. Finally, to consider the influence of users' long and short-term preferences, local and global session embeddings are combined with the attentional network to obtain the final session embedding. SR-HetGNN is shown to be superior to the existing state-of-the-art session-based recommendation methods through extensive experiments over two real large datasets Diginetica and Tmall.
Abstract:In this paper, we develop a new nonconvex approach to the problem of low-rank and sparse matrix decomposition. In our nonconvex method, we replace the rank function and the $\ell_{0}$-norm of a given matrix with a non-convex fraction function on the singular values and the elements of the matrix respectively. An alternative direction method of multipliers algorithm is utilized to solve our nonconvex problem with the non-convex fraction function penalty. Numerical experiments on video surveillance show that our method performs very well in separating the moving objects from the static background.