Abstract:Geospatial predictions are crucial for diverse fields such as disaster management, urban planning, and public health. Traditional machine learning methods often face limitations when handling unstructured or multi-modal data like street view imagery. To address these challenges, we propose StreetViewLLM, a novel framework that integrates a large language model with the chain-of-thought reasoning and multimodal data sources. By combining street view imagery with geographic coordinates and textual data, StreetViewLLM improves the precision and granularity of geospatial predictions. Using retrieval-augmented generation techniques, our approach enhances geographic information extraction, enabling a detailed analysis of urban environments. The model has been applied to seven global cities, including Hong Kong, Tokyo, Singapore, Los Angeles, New York, London, and Paris, demonstrating superior performance in predicting urban indicators, including population density, accessibility to healthcare, normalized difference vegetation index, building height, and impervious surface. The results show that StreetViewLLM consistently outperforms baseline models, offering improved predictive accuracy and deeper insights into the built environment. This research opens new opportunities for integrating the large language model into urban analytics, decision-making in urban planning, infrastructure management, and environmental monitoring.
Abstract:Urban Building Exteriors are increasingly important in urban analytics, driven by advancements in Street View Imagery and its integration with urban research. Multimodal Large Language Models (LLMs) offer powerful tools for urban annotation, enabling deeper insights into urban environments. However, challenges remain in creating accurate and detailed urban building exterior databases, identifying critical indicators for energy efficiency, environmental sustainability, and human-centric design, and systematically organizing these indicators. To address these challenges, we propose BuildingView, a novel approach that integrates high-resolution visual data from Google Street View with spatial information from OpenStreetMap via the Overpass API. This research improves the accuracy of urban building exterior data, identifies key sustainability and design indicators, and develops a framework for their extraction and categorization. Our methodology includes a systematic literature review, building and Street View sampling, and annotation using the ChatGPT-4O API. The resulting database, validated with data from New York City, Amsterdam, and Singapore, provides a comprehensive tool for urban studies, supporting informed decision-making in urban planning, architectural design, and environmental policy. The code for BuildingView is available at https://github.com/Jasper0122/BuildingView.