Abstract:Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice. In this work, we organized the first international competition dedicated to promptable medical image segmentation, featuring a large-scale dataset spanning nine common imaging modalities from over 20 different institutions. The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline that substantially reduced computational requirements while maintaining state-of-the-art segmentation accuracy. Moreover, the post-challenge phase advanced the algorithms through the design of performance booster and reproducibility tasks, resulting in improved algorithms and validated reproducibility of the winning solution. Furthermore, the best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption. The data and code are publicly available to foster the further development of medical image segmentation foundation models and pave the way for impactful real-world applications.
Abstract:Medical image segmentation is a critical component of clinical practice, and the state-of-the-art MedSAM model has significantly advanced this field. Nevertheless, critiques highlight that MedSAM demands substantial computational resources during inference. To address this issue, the CVPR 2024 MedSAM on Laptop Challenge was established to find an optimal balance between accuracy and processing speed. In this paper, we introduce a quantization-aware training pipeline designed to efficiently quantize the Segment Anything Model for medical images and deploy it using the OpenVINO inference engine. This pipeline optimizes both training time and disk storage. Our experimental results confirm that this approach considerably enhances processing speed over the baseline, while still achieving an acceptable accuracy level. The training script, inference script, and quantized model are publicly accessible at https://github.com/AVC2-UESTC/QMedSAM.
Abstract:Mobile devices, especially smartphones, can support rich functions and have developed into indispensable tools in daily life. With the rise of generative AI services, smartphones can potentially transform into personalized assistants, anticipating user needs and scheduling services accordingly. Predicting user intents on smartphones, and reflecting anticipated activities based on past interactions and context, remains a pivotal step towards this vision. Existing research predominantly focuses on specific domains, neglecting the challenge of modeling diverse event sequences across dynamic contexts. Leveraging pre-trained language models (PLMs) offers a promising avenue, yet adapting PLMs to on-device user intent prediction presents significant challenges. To address these challenges, we propose PITuning, a Population-to-Individual Tuning framework. PITuning enhances common pattern extraction through dynamic event-to-intent transition modeling and addresses long-tailed preferences via adaptive unlearning strategies. Experimental results on real-world datasets demonstrate PITuning's superior intent prediction performance, highlighting its ability to capture long-tailed preferences and its practicality for on-device prediction scenarios.