Abstract:Federated learning (FL) allows clients in an Internet of Things (IoT) system to collaboratively train a global model without sharing their local data with a server. However, clients' contributions to the server can still leak sensitive information. Differential privacy (DP) addresses such leakage by providing formal privacy guarantees, with mechanisms that add randomness to the clients' contributions. The randomness makes it infeasible to train large transformer-based models, common in modern IoT systems. In this work, we empirically evaluate the practicality of fine-tuning large scale on-device transformer-based models with differential privacy in a federated learning system. We conduct comprehensive experiments on various system properties for tasks spanning a multitude of domains: speech recognition, computer vision (CV) and natural language understanding (NLU). Our results show that full fine-tuning under differentially private federated learning (DP-FL) generally leads to huge performance degradation which can be alleviated by reducing the dimensionality of contributions through parameter-efficient fine-tuning (PEFT). Our benchmarks of existing DP-PEFT methods show that DP-Low-Rank Adaptation (DP-LoRA) consistently outperforms other methods. An even more promising approach, DyLoRA, which makes the low rank variable, when naively combined with FL would straightforwardly break differential privacy. We therefore propose an adaptation method that can be combined with differential privacy and call it DP-DyLoRA. Finally, we are able to reduce the accuracy degradation and word error rate (WER) increase due to DP to less than 2% and 7% respectively with 1 million clients and a stringent privacy budget of {\epsilon}=2.
Abstract:On-device Automatic Speech Recognition (ASR) models trained on speech data of a large population might underperform for individuals unseen during training. This is due to a domain shift between user data and the original training data, differed by user's speaking characteristics and environmental acoustic conditions. ASR personalisation is a solution that aims to exploit user data to improve model robustness. The majority of ASR personalisation methods assume labelled user data for supervision. Personalisation without any labelled data is challenging due to limited data size and poor quality of recorded audio samples. This work addresses unsupervised personalisation by developing a novel consistency based training method via pseudo-labelling. Our method achieves a relative Word Error Rate Reduction (WERR) of 17.3% on unlabelled training data and 8.1% on held-out data compared to a pre-trained model, and outperforms the current state-of-the art methods.
Abstract:Federated Learning (FL) enables training state-of-the-art Automatic Speech Recognition (ASR) models on user devices (clients) in distributed systems, hence preventing transmission of raw user data to a central server. A key challenge facing practical adoption of FL for ASR is obtaining ground-truth labels on the clients. Existing approaches rely on clients to manually transcribe their speech, which is impractical for obtaining large training corpora. A promising alternative is using semi-/self-supervised learning approaches to leverage unlabelled user data. To this end, we propose a new Federated ASR method called FedNST for noisy student training of distributed ASR models with private unlabelled user data. We explore various facets of FedNST , such as training models with different proportions of unlabelled and labelled data, and evaluate the proposed approach on 1173 simulated clients. Evaluating FedNST on LibriSpeech, where 960 hours of speech data is split equally into server (labelled) and client (unlabelled) data, showed a 22.5% relative word error rate reduction (WERR) over a supervised baseline trained only on server data.