Abstract:Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection, addressing critical challenges in the security domain. Traditional methods, such as static and dynamic analysis, often falter due to inefficiencies, high false positive rates, and the growing complexity of modern software systems. By leveraging their ability to analyze code structures, identify patterns, and generate repair sugges- tions, LLMs, exemplified by models like GPT, BERT, and CodeBERT, present a novel and scalable approach to mitigating vulnerabilities. This paper provides a detailed survey of LLMs in vulnerability detection. It examines key aspects, including model architectures, application methods, target languages, fine-tuning strategies, datasets, and evaluation metrics. We also analyze the scope of current research problems, highlighting the strengths and weaknesses of existing approaches. Further, we address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis. Based on these findings, we propose solutions for issues like dataset scalability, model interpretability, and applications in low-resource scenarios. Our contributions are threefold: (1) a systematic review of how LLMs are applied in vulnerability detection; (2) an analysis of shared patterns and differences across studies, with a unified framework for understanding the field; and (3) a summary of key challenges and future research directions. This work provides valuable insights for advancing LLM-based vulnerability detection. We also maintain and regularly update latest selected paper on https://github.com/OwenSanzas/LLM-For-Vulnerability-Detection
Abstract:Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection, addressing critical challenges in the security domain. Traditional methods, such as static and dynamic analysis, often falter due to inefficiencies, high false positive rates, and the growing complexity of modern software systems. By leveraging their ability to analyze code structures, identify patterns, and generate repair sugges- tions, LLMs, exemplified by models like GPT, BERT, and CodeBERT, present a novel and scalable approach to mitigating vulnerabilities. This paper provides a detailed survey of LLMs in vulnerability detection. It examines key aspects, including model architectures, application methods, target languages, fine-tuning strategies, datasets, and evaluation metrics. We also analyze the scope of current research problems, highlighting the strengths and weaknesses of existing approaches. Further, we address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis. Based on these findings, we propose solutions for issues like dataset scalability, model interpretability, and applications in low-resource scenarios. Our contributions are threefold: (1) a systematic review of how LLMs are applied in vulnerability detection; (2) an analysis of shared patterns and differences across studies, with a unified framework for understanding the field; and (3) a summary of key challenges and future research directions. This work provides valuable insights for advancing LLM-based vulnerability detection. We also maintain and regularly update latest selected paper on https://github.com/OwenSanzas/LLM-For-Vulnerability-Detection
Abstract:Recent research has shown Deep Neural Networks (DNNs) to be vulnerable to adversarial examples that induce desired misclassifications in the models. Such risks impede the application of machine learning in security-sensitive domains. Several defense methods have been proposed against adversarial attacks to detect adversarial examples at test time or to make machine learning models more robust. However, while existing methods are quite effective under blackbox threat model, where the attacker is not aware of the defense, they are relatively ineffective under whitebox threat model, where the attacker has full knowledge of the defense. In this paper, we propose ExAD, a framework to detect adversarial examples using an ensemble of explanation techniques. Each explanation technique in ExAD produces an explanation map identifying the relevance of input variables for the model's classification. For every class in a dataset, the system includes a detector network, corresponding to each explanation technique, which is trained to distinguish between normal and abnormal explanation maps. At test time, if the explanation map of an input is detected as abnormal by any detector model of the classified class, then we consider the input to be an adversarial example. We evaluate our approach using six state-of-the-art adversarial attacks on three image datasets. Our extensive evaluation shows that our mechanism can effectively detect these attacks under blackbox threat model with limited false-positives. Furthermore, we find that our approach achieves promising results in limiting the success rate of whitebox attacks.
Abstract:Voice-driven services (VDS) are being used in a variety of applications ranging from smart home control to payments using digital assistants. The input to such services is often captured via an open voice channel, e.g., using a microphone, in an unsupervised setting. One of the key operational security requirements in such setting is the freshness of the input speech. We present AEOLUS, a security overlay that proactively embeds a dynamic acoustic nonce at the time of user interaction, and detects the presence of the embedded nonce in the recorded speech to ensure freshness. We demonstrate that acoustic nonce can (i) be reliably embedded and retrieved, and (ii) be non-disruptive (and even imperceptible) to a VDS user. Optimal parameters (acoustic nonce's operating frequency, amplitude, and bitrate) are determined for (i) and (ii) from a practical perspective. Experimental results show that AEOLUS yields 0.5% FRR at 0% FAR for speech re-use prevention upto a distance of 4 meters in three real-world environments with different background noise levels. We also conduct a user study with 120 participants, which shows that the acoustic nonce does not degrade overall user experience for 94.16% of speech samples, on average, in these environments. AEOLUS can therefore be used in practice to prevent speech re-use and ensure the freshness of speech input.