Abstract:Secure multi-party computation (MPC) techniques can be used to provide data privacy when users query deep neural network (DNN) models hosted on a public cloud. State-of-the-art MPC techniques can be directly leveraged for DNN models that use simple activation functions (AFs) such as ReLU. However, DNN model architectures designed for cutting-edge applications often use complex and highly non-linear AFs. Designing efficient MPC techniques for such complex AFs is an open problem. Towards this, we propose Compact, which produces piece-wise polynomial approximations of complex AFs to enable their efficient use with state-of-the-art MPC techniques. Compact neither requires nor imposes any restriction on model training and results in near-identical model accuracy. We extensively evaluate Compact on four different machine-learning tasks with DNN architectures that use popular complex AFs SiLU, GeLU, and Mish. Our experimental results show that Compact incurs negligible accuracy loss compared to DNN-specific approaches for handling complex non-linear AFs. We also incorporate Compact in two state-of-the-art MPC libraries for privacy-preserving inference and demonstrate that Compact provides 2x-5x speedup in computation compared to the state-of-the-art approximation approach for non-linear functions -- while providing similar or better accuracy for DNN models with large number of hidden layers
Abstract:Voice-driven services (VDS) are being used in a variety of applications ranging from smart home control to payments using digital assistants. The input to such services is often captured via an open voice channel, e.g., using a microphone, in an unsupervised setting. One of the key operational security requirements in such setting is the freshness of the input speech. We present AEOLUS, a security overlay that proactively embeds a dynamic acoustic nonce at the time of user interaction, and detects the presence of the embedded nonce in the recorded speech to ensure freshness. We demonstrate that acoustic nonce can (i) be reliably embedded and retrieved, and (ii) be non-disruptive (and even imperceptible) to a VDS user. Optimal parameters (acoustic nonce's operating frequency, amplitude, and bitrate) are determined for (i) and (ii) from a practical perspective. Experimental results show that AEOLUS yields 0.5% FRR at 0% FAR for speech re-use prevention upto a distance of 4 meters in three real-world environments with different background noise levels. We also conduct a user study with 120 participants, which shows that the acoustic nonce does not degrade overall user experience for 94.16% of speech samples, on average, in these environments. AEOLUS can therefore be used in practice to prevent speech re-use and ensure the freshness of speech input.