Abstract:Recent post-training quantization (PTQ) methods have adopted block rotations to diffuse outliers prior to rounding. While this reduces the overhead of full-vector rotations, the effect of block structure on outlier suppression remains poorly understood. To fill this gap, we present the first systematic, non-asymptotic analysis of outlier suppression for block Hadamard rotations. Our analysis reveals that outlier suppression is fundamentally limited by the geometry of the input vector. In particular, post-rotation outliers are deterministically minimized when the pre-rotation $\ell_1$ norm mass is evenly distributed across blocks. Guided by these insights, we introduce MixQuant, a block rotation-aware PTQ framework that redistributes activation mass via permutations prior to rotation. We propose a greedy mass diffusion algorithm to calibrate permutations by equalizing the expected blockwise $\ell_1$ norms. To avoid adding inference overhead, we identify permutation-equivariant regions in transformer architectures to merge the resulting permutations into model weights before deployment. Experiments show that MixQuant consistently improves accuracy across all block sizes, recovering up to 90% of the full-vector rotation perplexity when quantizing Llama3 1B to INT4 with block size 16, compared to 46% without permutations.
Abstract:Several recent studies have investigated low-precision accumulation, reporting improvements in throughput, power, and area across various platforms. However, the accompanying proposals have only considered the quantization-aware training (QAT) paradigm, in which models are fine-tuned or trained from scratch with quantization in the loop. As models continue to grow in size, QAT techniques become increasingly more expensive, which has motivated the recent surge in post-training quantization (PTQ) research. To the best of our knowledge, ours marks the first formal study of accumulator-aware quantization in the PTQ setting. To bridge this gap, we introduce AXE, a practical framework of accumulator-aware extensions designed to endow overflow avoidance guarantees to existing layer-wise PTQ algorithms. We theoretically motivate AXE and demonstrate its flexibility by implementing it on top of two state-of-the-art PTQ algorithms: GPFQ and OPTQ. We further generalize AXE to support multi-stage accumulation for the first time, opening the door for full datapath optimization and scaling to large language models (LLMs). We evaluate AXE across image classification and language generation models, and observe significant improvements in the trade-off between accumulator bit width and model accuracy over baseline methods.




Abstract:Post-Training Quantization (PTQ) is a powerful technique for model compression, reducing the precision of neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point quantization (FP8) in the context of PTQ for model inference. However, the exploration of floating-point formats smaller than 8 bits and their comparison with integer quantization remains relatively limited. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. Our work presents a novel PTQ design-space exploration, comparing minifloat and integer quantization schemes across a range of 3 to 8 bits for both weights and activations. We examine the applicability of various PTQ techniques to minifloats, including weight equalization, bias correction, SmoothQuant, gradient-based learned rounding, and the GPTQ method. Our experiments validate the effectiveness of low-precision minifloats when compared to their integer counterparts across a spectrum of accuracy-precision trade-offs on a set of reference deep learning vision workloads. Finally, we evaluate our results against an FPGA-based hardware cost model, showing that integer quantization often remains the Pareto-optimal option, given its relatively smaller hardware resource footprint.