Abstract:We present some initial results of a large-scale Italian project called PRODIGIT which aims to support tax judges and lawyers through digital technology, focusing on AI. We have focused on generation of summaries of judicial decisions and on the extraction of related information, such as the identification of legal issues and decision-making criteria, and the specification of keywords. To this end, we have deployed and evaluated different tools and approaches to extractive and abstractive summarisation. We have applied LLMs, and particularly on GPT4, which has enabled us to obtain results that proved satisfactory, according to an evaluation by expert tax judges and lawyers. On this basis, a prototype application is being built which will be made publicly available.
Abstract:This paper examines how a notion of stable explanation developed elsewhere in Defeasible Logic can be expressed in the context of formal argumentation. With this done, we discuss the deontic meaning of this reconstruction and show how to build from argumentation neighborhood structures for deontic logic where this notion of explanation can be characterised. Some direct complexity results are offered.
Abstract:This paper brings together two lines of research: factor-based models of case-based reasoning (CBR) and the logical specification of classifiers. Logical approaches to classifiers capture the connection between features and outcomes in classifier systems. Factor-based reasoning is a popular approach to reasoning by precedent in AI & Law. Horty (2011) has developed the factor-based models of precedent into a theory of precedential constraint. In this paper we combine the modal logic approach (binary-input classifier, BLC) to classifiers and their explanations given by Liu & Lorini (2021) with Horty's account of factor-based CBR, since both a classifier and CBR map sets of features to decisions or classifications. We reformulate case bases of Horty in the language of BCL, and give several representation results. Furthermore, we show how notions of CBR, e.g. reason, preference between reasons, can be analyzed by notions of classifier system.
Abstract:In a ceteris-paribus semantics for deontic logic, a state of affairs where a larger set of prescriptions is respected is preferable to a state of affairs where some of them are violated. Conditional preference nets (CP-nets) are a compact formalism to express and analyse ceteris paribus preferences, which nice computational properties. This paper shows how deontic concepts can be captured through conditional preference models. A restricted deontic logic will be defined, and mapped into conditional preference nets. We shall also show how to model contrary to duties obligations in CP-nets and how to capture in this formalism the distinction between strong and weak permission.
Abstract:Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.
Abstract:The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature.