Abstract:The trade-off between reliability, latency, and energy-efficiency is a central problem in communication systems. Advanced hybrid automated repeat request (HARQ) techniques can reduce the number of retransmissions required for reliable communication, but they have a significant computational cost. On the other hand, strict energy constraints apply mainly to devices, while the access point receiving their packets is usually connected to the electrical grid. Therefore, moving the computational complexity required for HARQ schemes from the transmitter to the receiver may provide a way to overcome this trade-off. To achieve this, we propose the Reinforcement-based Adaptive Feedback (RAF) scheme, in which the receiver adaptively learns how much additional redundancy it requires to decode a packet and sends rich feedback (i.e., more than a single bit), requesting the coded retransmission of specific symbols. Simulation results show that the RAF scheme achieves a better trade-off between energy-efficiency, reliability, and latency, compared to existing HARQ solutions and a fixed threshold-based policy. Our RAF scheme can easily adapt to different modulation schemes, and since it relies on the posterior probabilities of the codeword symbols at the decoder, it can generalize to different channel statistics.
Abstract:We present our vision for a departure from the established way of architecting and assessing communication networks, by incorporating the semantics of information for communications and control in networked systems. We define semantics of information, not as the meaning of the messages, but as their significance, possibly within a real time constraint, relative to the purpose of the data exchange. We argue that research efforts must focus on laying the theoretical foundations of a redesign of the entire process of information generation, transmission and usage in unison by developing: advanced semantic metrics for communications and control systems; an optimal sampling theory combining signal sparsity and semantics, for real-time prediction, reconstruction and control under communication constraints and delays; semantic compressed sensing techniques for decision making and inference directly in the compressed domain; semantic-aware data generation, channel coding, feedback, multiple and random access schemes that reduce the volume of data and the energy consumption, increasing the number of supportable devices.
Abstract:We propose a coded distributed computing scheme based on Raptor codes to address the straggler problem. In particular, we consider a scheme where each server computes intermediate values, referred to as droplets, that are either stored locally or sent over the network. Once enough droplets are collected, the computation can be completed. Compared to previous schemes in the literature, our proposed scheme achieves lower computational delay when the decoding time is taken into account.