Abstract:The trade-off between reliability, latency, and energy-efficiency is a central problem in communication systems. Advanced hybrid automated repeat request (HARQ) techniques can reduce the number of retransmissions required for reliable communication, but they have a significant computational cost. On the other hand, strict energy constraints apply mainly to devices, while the access point receiving their packets is usually connected to the electrical grid. Therefore, moving the computational complexity required for HARQ schemes from the transmitter to the receiver may provide a way to overcome this trade-off. To achieve this, we propose the Reinforcement-based Adaptive Feedback (RAF) scheme, in which the receiver adaptively learns how much additional redundancy it requires to decode a packet and sends rich feedback (i.e., more than a single bit), requesting the coded retransmission of specific symbols. Simulation results show that the RAF scheme achieves a better trade-off between energy-efficiency, reliability, and latency, compared to existing HARQ solutions and a fixed threshold-based policy. Our RAF scheme can easily adapt to different modulation schemes, and since it relies on the posterior probabilities of the codeword symbols at the decoder, it can generalize to different channel statistics.