Abstract:This paper analyzes monostatic sensing by a user equipment (UE) for a setting in which the UE is unable to resolve multiple targets due to their interference within a single resolution bin. It is shown how sensing accuracy, in terms of both detection rate and localization accuracy, can be boosted by a reconfigurable intelligent surface (RIS), which can be advantageously used to provide signal diversity and aid in resolving the targets. Specifically, assuming prior information on the presence of a cluster of targets, a RIS beam sweep procedure is used to facilitate the high resolution sensing. We derive the Cram\'er-Rao lower bounds (CRLBs) for channel parameter estimation and sensing and an upper bound on the detection probability. The concept of coherence is defined and analyzed theoretically. Then, we propose an orthogonal matching pursuit (OMP) channel estimation algorithm combined with data association to fuse the information of the non-RIS signal and the RIS signal and perform sensing. Finally, we provide numerical results to verify the potential of RIS for improving sensor resolution, and to demonstrate that the proposed methods can realize this potential for RIS-assisted high resolution sensing.
Abstract:Intelligent metasurfaces are one of the favorite technologies for integrating sixth-generation (6G) networks, especially the reconfigurable intelligent surface (RIS) that has been extensively researched in various applications. In this context, a feature that deserves further exploration is the frequency scattering that occurs when the elements are periodically switched, referred to as Space-Time-Coding metasurface (STCM) topology. This type of topology causes impairments to the established communication methods by generating undesirable interference both in frequency and space, which is worsened when using wideband signals. Nevertheless, it has the potential to bring forward useful features for sensing and localization. This work exploits STCM sensing capabilities in target detection, localization, and classification using narrowband downlink pilot signals at the base station (BS). The results of this novel approach reveal the ability to retrieve a scattering point (SP) localization within the sub-centimeter and sub-decimeter accuracy depending on the SP position in space. We also analyze the associated detection and classification probabilities, which show reliable detection performance in the whole analyzed environment. In contrast, the classification is bounded by physical constraints, and we conclude that this method presents a promising approach for future integrated sensing and communications (ISAC) protocols by providing a tool to perform sensing and localization services using legacy communication signals.
Abstract:Location information is often used as a proxy to guarantee the performance of a wireless communication link. However, localization errors can result in a significant mismatch with the guarantees, particularly detrimental to users operating the ultra-reliable low-latency communication (URLLC) regime. This paper unveils the fundamental statistical relations between location estimation uncertainty and wireless link reliability, specifically in the context of rate selection for ultra-reliable communication. We start with a simple one-dimensional narrowband Rayleigh fading scenario and build towards a two-dimensional scenario in a rich scattering environment. The wireless link reliability is characterized by the meta-probability, the probability with respect to localization error of exceeding the outage capacity, and by removing other sources of errors in the system, we show that reliability is sensitive to localization errors. The $\epsilon$-outage coherence radius is defined and shown to provide valuable insight into the problem of location-based rate selection. However, it is generally challenging to guarantee reliability without accurate knowledge of the propagation environment. Finally, several rate-selection schemes are proposed, showcasing the problem's dynamics and revealing that properly accounting for the localization error is critical to ensure good performance in terms of reliability and achievable throughput.
Abstract:The trade-off between reliability, latency, and energy-efficiency is a central problem in communication systems. Advanced hybrid automated repeat request (HARQ) techniques can reduce the number of retransmissions required for reliable communication, but they have a significant computational cost. On the other hand, strict energy constraints apply mainly to devices, while the access point receiving their packets is usually connected to the electrical grid. Therefore, moving the computational complexity required for HARQ schemes from the transmitter to the receiver may provide a way to overcome this trade-off. To achieve this, we propose the Reinforcement-based Adaptive Feedback (RAF) scheme, in which the receiver adaptively learns how much additional redundancy it requires to decode a packet and sends rich feedback (i.e., more than a single bit), requesting the coded retransmission of specific symbols. Simulation results show that the RAF scheme achieves a better trade-off between energy-efficiency, reliability, and latency, compared to existing HARQ solutions and a fixed threshold-based policy. Our RAF scheme can easily adapt to different modulation schemes, and since it relies on the posterior probabilities of the codeword symbols at the decoder, it can generalize to different channel statistics.