Abstract:Hierarchical policies enable strong performance in many sequential decision-making problems, such as those with high-dimensional action spaces, those requiring long-horizon planning, and settings with sparse rewards. However, learning hierarchical policies from static offline datasets presents a significant challenge. Crucially, actions taken by higher-level policies may not be directly observable within hierarchical controllers, and the offline dataset might have been generated using a different policy structure, hindering the use of standard offline learning algorithms. In this work, we propose OHIO: a framework for offline reinforcement learning (RL) of hierarchical policies. Our framework leverages knowledge of the policy structure to solve the inverse problem, recovering the unobservable high-level actions that likely generated the observed data under our hierarchical policy. This approach constructs a dataset suitable for off-the-shelf offline training. We demonstrate our framework on robotic and network optimization problems and show that it substantially outperforms end-to-end RL methods and improves robustness. We investigate a variety of instantiations of our framework, both in direct deployment of policies trained offline and when online fine-tuning is performed.
Abstract:With the expansion of cities over time, URT (Urban Rail Transit) networks have also grown significantly. Demand prediction plays an important role in supporting planning, scheduling, fleet management, and other operational decisions. In this study, we propose an Origin-Destination (OD) demand prediction model called Multi-Graph Inductive Representation Learning (mGraphSAGE) for large-scale URT networks under operational uncertainties. Our main contributions are twofold: we enhance prediction results while ensuring scalability for large networks by relying simultaneously on multiple graphs, where each OD pair is a node on a graph and distinct OD relationships, such as temporal and spatial correlations; we show the importance of including operational uncertainties such as train delays and cancellations as inputs in demand prediction for daily operations. The model is validated on three different scales of the URT network in Copenhagen, Denmark. Experimental results show that by leveraging information from neighboring ODs and learning node representations via sampling and aggregation, mGraphSAGE is particularly suitable for OD demand prediction in large-scale URT networks, outperforming reference machine learning methods. Furthermore, during periods with train cancellations and delays, the performance gap between mGraphSAGE and other methods improves compared to normal operating conditions, demonstrating its ability to leverage system reliability information for predicting OD demand under uncertainty.
Abstract:Bayesian active learning is based on information theoretical approaches that focus on maximising the information that new observations provide to the model parameters. This is commonly done by maximising the Bayesian Active Learning by Disagreement (BALD) acquisitions function. However, we highlight that it is challenging to estimate BALD when the new data points are subject to censorship, where only clipped values of the targets are observed. To address this, we derive the entropy and the mutual information for censored distributions and derive the BALD objective for active learning in censored regression ($\mathcal{C}$-BALD). We propose a novel modelling approach to estimate the $\mathcal{C}$-BALD objective and use it for active learning in the censored setting. Across a wide range of datasets and models, we demonstrate that $\mathcal{C}$-BALD outperforms other Bayesian active learning methods in censored regression.
Abstract:Urban mobility is on the cusp of transformation with the emergence of shared, connected, and cooperative automated vehicles. Yet, for them to be accepted by customers, trust in their punctuality is vital. Many pilot initiatives operate without a fixed schedule, thus enhancing the importance of reliable arrival time (AT) predictions. This study presents an AT prediction system for autonomous shuttles, utilizing separate models for dwell and running time predictions, validated on real-world data from five cities. Alongside established methods such as XGBoost, we explore the benefits of integrating spatial data using graph neural networks (GNN). To accurately handle the case of a shuttle bypassing a stop, we propose a hierarchical model combining a random forest classifier and a GNN. The results for the final AT prediction are promising, showing low errors even when predicting several stops ahead. Yet, no single model emerges as universally superior, and we provide insights into the characteristics of pilot sites that influence the model selection process. Finally, we identify dwell time prediction as the key determinant in overall AT prediction accuracy when autonomous shuttles are deployed in low-traffic areas or under regulatory speed limits. This research provides insights into the current state of autonomous public transport prediction models and paves the way for more data-informed decision-making as the field advances.
Abstract:It is desirable to have accurate uncertainty estimation from a single deterministic forward-pass model, as traditional methods for uncertainty quantification are computationally expensive. However, this is difficult because single forward-pass models do not sample weights during inference and often make assumptions about the target distribution, such as assuming it is Gaussian. This can be restrictive in regression tasks, where the mean and standard deviation are inadequate to model the target distribution accurately. This paper proposes a deep Bayesian quantile regression model that can estimate the quantiles of a continuous target distribution without the Gaussian assumption. The proposed method is based on evidential learning, which allows the model to capture aleatoric and epistemic uncertainty with a single deterministic forward-pass model. This makes the method efficient and scalable to large models and datasets. We demonstrate that the proposed method achieves calibrated uncertainties on non-Gaussian distributions, disentanglement of aleatoric and epistemic uncertainty, and robustness to out-of-distribution samples.
Abstract:Optimization problems over dynamic networks have been extensively studied and widely used in the past decades to formulate numerous real-world problems. However, (1) traditional optimization-based approaches do not scale to large networks, and (2) the design of good heuristics or approximation algorithms often requires significant manual trial-and-error. In this work, we argue that data-driven strategies can automate this process and learn efficient algorithms without compromising optimality. To do so, we present network control problems through the lens of reinforcement learning and propose a graph network-based framework to handle a broad class of problems. Instead of naively computing actions over high-dimensional graph elements, e.g., edges, we propose a bi-level formulation where we (1) specify a desired next state via RL, and (2) solve a convex program to best achieve it, leading to drastically improved scalability and performance. We further highlight a collection of desirable features to system designers, investigate design decisions, and present experiments on real-world control problems showing the utility, scalability, and flexibility of our framework.
Abstract:Railway operations involve different types of entities (stations, trains, etc.), making the existing graph/network models with homogenous nodes (i.e., the same kind of nodes) incapable of capturing the interactions between the entities. This paper aims to develop a heterogeneous graph neural network (HetGNN) model, which can address different types of nodes (i.e., heterogeneous nodes), to investigate the train delay evolution on railway networks. To this end, a graph architecture combining the HetGNN model and the GraphSAGE homogeneous GNN (HomoGNN), called SAGE-Het, is proposed. The aim is to capture the interactions between trains, trains and stations, and stations and other stations on delay evolution based on different edges. In contrast to the traditional methods that require the inputs to have constant dimensions (e.g., in rectangular or grid-like arrays) or only allow homogeneous nodes in the graph, SAGE-Het allows for flexible inputs and heterogeneous nodes. The data from two sub-networks of the China railway network are applied to test the performance and robustness of the proposed SAGE-Het model. The experimental results show that SAGE-Het exhibits better performance than the existing delay prediction methods and some advanced HetGNNs used for other prediction tasks; the predictive performances of SAGE-Het under different prediction time horizons (10/20/30 min ahead) all outperform other baseline methods; Specifically, the influences of train interactions on delay propagation are investigated based on the proposed model. The results show that train interactions become subtle when the train headways increase . This finding directly contributes to decision-making in the situation where conflict-resolution or train-canceling actions are needed.
Abstract:Autonomous Mobility-on-Demand (AMoD) systems are a rapidly evolving mode of transportation in which a centrally coordinated fleet of self-driving vehicles dynamically serves travel requests. The control of these systems is typically formulated as a large network optimization problem, and reinforcement learning (RL) has recently emerged as a promising approach to solve the open challenges in this space. However, current RL-based approaches exclusively focus on learning from online data, fundamentally ignoring the per-sample-cost of interactions within real-world transportation systems. To address these limitations, we propose to formalize the control of AMoD systems through the lens of offline reinforcement learning and learn effective control strategies via solely offline data, thus readily available to current mobility operators. We further investigate design decisions and provide experiments on real-world mobility systems showing how offline learning allows to recover AMoD control policies that (i) exhibit performance on par with online methods, (ii) drastically improve data efficiency, and (iii) completely eliminate the need for complex simulated environments. Crucially, this paper demonstrates that offline reinforcement learning is a promising paradigm for the application of RL-based solutions within economically-critical systems, such as mobility systems.
Abstract:Electric vehicle charging demand models, with charging records as input, will inherently be biased toward the supply of available chargers, as the data do not include demand lost from occupied stations and competitors. This lost demand implies that the records only observe a fraction of the total demand, i.e. the observations are censored, and actual demand is likely higher than what the data reflect. Machine learning models often neglect to account for this censored demand when forecasting the charging demand, which limits models' applications for future expansions and supply management. We address this gap by modelling the charging demand with probabilistic censorship-aware graph neural networks, which learn the latent demand distribution in both the spatial and temporal dimensions. We use GPS trajectories from cars in Copenhagen, Denmark, to study how censoring occurs and much demand is lost due to occupied charging and competing services. We find that censorship varies throughout the city and over time, encouraging spatial and temporal modelling. We find that in some regions of Copenhagen, censorship occurs 61% of the time. Our results show censorship-aware models provide better prediction and uncertainty estimation in actual future demand than censorship-unaware models. Our results suggest that future models based on charging records should account for the censoring to expand the application areas of machine learning models in this supply management and infrastructure expansion.
Abstract:The mixed multinomial logit (MMNL) model assumes constant preference parameters of a decision-maker throughout different choice situations, which may be considered too strong for certain choice modelling applications. This paper proposes an effective approach to model context-dependent intra-respondent heterogeneity and introduces the idea of Context-aware Bayesian Mixed Multinomial Logit (C-MMNL) Model, where a neural network maps contextual information to shifts in the preference parameters of each individual in each choice occasion. The proposed model offers several key advantages. First, it supports for both continuous and discrete variables, as well as complex non-linear interactions between both types of variables. Secondly, each specification of the context is considered jointly as a whole by the neural network rather than each variable being considered independently. Finally, since the parameters of the neural network are shared across all decision-makers, it can leverage information from other decision-makers and use it to infer the effect of a particular context. Even though the C-MMNL model allows for flexible interactions between attributes, there is hardly an increase in the complexity of the model and the computation time, compared to the MMNL model. We present two real-world case studies from travel behaviour domain - a travel mode choice model and a bicycle route choice model. The bicycle route choice model is based on a large-scale, crowdsourced dataset of GPS trajectories including 110,083 trips made by 8,555 cyclists.