Abstract:In this paper we define and investigate the problem of \emph{persona authentication}: learning a conversational policy to verify the consistency of persona models. We propose a learning objective and prove (under some mild assumptions) that local density estimators trained under this objective maximize the mutual information between persona information and dialog trajectory. Based on the proposed objective, we develop a method of learning an authentication model that adaptively outputs personalized questions to reveal the underlying persona of its partner throughout the course of multi-turn conversation. Experiments show that our authentication method discovers effective question sequences that generalize to unseen persona profiles.
Abstract:In recent years, increasingly augmentation of health data, such as patient Electronic Health Records (EHR), are becoming readily available. This provides an unprecedented opportunity for knowledge discovery and data mining algorithms to dig insights from them, which can, later on, be helpful to the improvement of the quality of care delivery. Predictive modeling of clinical risk, including in-hospital mortality, hospital readmission, chronic disease onset, condition exacerbation, etc., from patient EHR, is one of the health data analytic problems that attract most of the interests. The reason is not only because the problem is important in clinical settings, but also there are challenges working with EHR such as sparsity, irregularity, temporality, etc. Different from applications in other domains such as computer vision and natural language processing, the labeled data samples in medicine (patients) are relatively limited, which creates lots of troubles for effective predictive model learning, especially for complicated models such as deep learning. In this paper, we propose MetaPred, a meta-learning for clinical risk prediction from longitudinal patient EHRs. In particular, in order to predict the target risk where there are limited data samples, we train a meta-learner from a set of related risk prediction tasks which learns how a good predictor is learned. The meta-learned can then be directly used in target risk prediction, and the limited available samples can be used for further fine-tuning the model performance. The effectiveness of MetaPred is tested on a real patient EHR repository from Oregon Health & Science University. We are able to demonstrate that with CNN and RNN as base predictors, MetaPred can achieve much better performance for predicting target risk with low resources comparing with the predictor trained on the limited samples available for this risk.
Abstract:Recent advances in blockchain technologies have provided exciting opportunities for decentralized applications. Specifically, blockchain-based smart contracts enable credible transactions without authorized third parties. The attractive properties of smart contracts facilitate distributed data vending, allowing for proprietary data to be securely exchanged on a blockchain. Distributed data vending can transform domains such as healthcare by encouraging data distribution from owners and enabling large-scale data aggregation. However, one key challenge in distributed data vending is the trade-off dilemma between the effectiveness of data retrieval, and the leakage risk from indexing the data. In this paper, we propose a framework for distributed data vending through a combination of data embedding and similarity learning. We illustrate our framework through a practical scenario of distributing and aggregating electronic medical records on a blockchain. Extensive empirical results demonstrate the effectiveness of our framework.
Abstract:Mild cognitive impairment (MCI) is a prodromal phase in the progression from normal aging to dementia, especially Alzheimers disease. Even though there is mild cognitive decline in MCI patients, they have normal overall cognition and thus is challenging to distinguish from normal aging. Using transcribed data obtained from recorded conversational interactions between participants and trained interviewers, and applying supervised learning models to these data, a recent clinical trial has shown a promising result in differentiating MCI from normal aging. However, the substantial amount of interactions with medical staff can still incur significant medical care expenses in practice. In this paper, we propose a novel reinforcement learning (RL) framework to train an efficient dialogue agent on existing transcripts from clinical trials. Specifically, the agent is trained to sketch disease-specific lexical probability distribution, and thus to converse in a way that maximizes the diagnosis accuracy and minimizes the number of conversation turns. We evaluate the performance of the proposed reinforcement learning framework on the MCI diagnosis from a real clinical trial. The results show that while using only a few turns of conversation, our framework can significantly outperform state-of-the-art supervised learning approaches.
Abstract:The surging availability of electronic medical records (EHR) leads to increased research interests in medical predictive modeling. Recently many deep learning based predicted models are also developed for EHR data and demonstrated impressive performance. However, a series of recent studies showed that these deep models are not safe: they suffer from certain vulnerabilities. In short, a well-trained deep network can be extremely sensitive to inputs with negligible changes. These inputs are referred to as adversarial examples. In the context of medical informatics, such attacks could alter the result of a high performance deep predictive model by slightly perturbing a patient's medical records. Such instability not only reflects the weakness of deep architectures, more importantly, it offers guide on detecting susceptible parts on the inputs. In this paper, we propose an efficient and effective framework that learns a time-preferential minimum attack targeting the LSTM model with EHR inputs, and we leverage this attack strategy to screen medical records of patients and identify susceptible events and measurements. The efficient screening procedure can assist decision makers to pay extra attentions to the locations that can cause severe consequence if not measured correctly. We conduct extensive empirical studies on a real-world urgent care cohort and demonstrate the effectiveness of the proposed screening approach.