Abstract:Photonic integrated circuits are finding use in a variety of applications including optical transceivers, LIDAR, bio-sensing, photonic quantum computing, and Machine Learning (ML). In particular, with the exponentially increasing sizes of ML models, photonics-based accelerators are getting special attention as a sustainable solution because they can perform ML inferences with multiple orders of magnitude higher energy efficiency than CMOS-based accelerators. However, recent studies have shown that hardware manufacturing and infrastructure contribute significantly to the carbon footprint of computing devices, even surpassing the emissions generated during their use. For example, the manufacturing process accounts for 74% of the total carbon emissions from Apple in 2019. This prompts us to ask -- if we consider both the embodied (manufacturing) and operational carbon cost of photonics, is it indeed a viable avenue for a sustainable future? So, in this paper, we build a carbon footprint model for photonic chips and investigate the sustainability of photonics-based accelerators by conducting a case study on ADEPT, a photonics-based accelerator for deep neural network inference. Our analysis shows that photonics can reduce both operational and embodied carbon footprints with its high energy efficiency and at least 4$\times$ less fabrication carbon cost per unit area than 28 nm CMOS.
Abstract:Over the past few years, silicon photonics-based computing has emerged as a promising alternative to CMOS-based computing for Deep Neural Networks (DNN). Unfortunately, the non-linear operations and the high-precision requirements of DNNs make it extremely challenging to design efficient silicon photonics-based systems for DNN inference and training. Hyperdimensional Computing (HDC) is an emerging, brain-inspired machine learning technique that enjoys several advantages over existing DNNs, including being lightweight, requiring low-precision operands, and being robust to noise introduced by the nonidealities in the hardware. For HDC, computing in-memory (CiM) approaches have been widely used, as CiM reduces the data transfer cost if the operands can fit into the memory. However, inefficient multi-bit operations, high write latency, and low endurance make CiM ill-suited for HDC. On the other hand, the existing electro-photonic DNN accelerators are inefficient for HDC because they are specifically optimized for matrix multiplication in DNNs and consume a lot of power with high-precision data converters. In this paper, we argue that photonic computing and HDC complement each other better than photonic computing and DNNs, or CiM and HDC. We propose PhotoHDC, the first-ever electro-photonic accelerator for HDC training and inference, supporting the basic, record-based, and graph encoding schemes. Evaluating with popular datasets, we show that our accelerator can achieve two to five orders of magnitude lower EDP than the state-of-the-art electro-photonic DNN accelerators for implementing HDC training and inference. PhotoHDC also achieves four orders of magnitude lower energy-delay product than CiM-based accelerators for both HDC training and inference.