Abstract:In this work, we present a new federation framework for UnionLabs, an innovative cloud-based resource-sharing infrastructure designed for next-generation (NextG) and Internet of Things (IoT) over-the-air (OTA) experiments. The framework aims to reduce the federation complexity for testbeds developers by automating tedious backend operations, thereby providing scalable federation and remote access to various wireless testbeds. We first describe the key components of the new federation framework, including the Systems Manager Integration Engine (SMIE), the Automated Script Generator (ASG), and the Database Context Manager (DCM). We then prototype and deploy the new Federation Plane on the Amazon Web Services (AWS) public cloud, demonstrating its effectiveness by federating two wireless testbeds: i) UB NeXT, a 5G-and-beyond (5G+) testbed at the University at Buffalo, and ii) UT IoT, an IoT testbed at the University of Utah. Through this work we aim to initiate a grassroots campaign to democratize access to wireless research testbeds with heterogeneous hardware resources and network environment, and accelerate the establishment of a mature, open experimental ecosystem for the wireless community. The API of the new Federation Plane will be released to the community after internal testing is completed.
Abstract:Digital Twin (DT) technology is expected to play a pivotal role in NextG wireless systems. However, a key challenge remains in the evaluation of data-driven algorithms within DTs, particularly the transfer of learning from simulations to real-world environments. In this work, we investigate the sim-to-real gap in developing a digital twin for the NSF PAWR Platform, POWDER. We first develop a 3D model of the University of Utah campus, incorporating geographical measurements and all rooftop POWDER nodes. We then assess the accuracy of various path loss models used in training modeling and control policies, examining the impact of each model on sim-to-real link performance predictions. Finally, we discuss the lessons learned from model selection and simulation design, offering guidance for the implementation of DT-enabled wireless networks.
Abstract:Decentralized bilevel optimization has received increasing attention recently due to its foundational role in many emerging multi-agent learning paradigms (e.g., multi-agent meta-learning and multi-agent reinforcement learning) over peer-to-peer edge networks. However, to work with the limited computation and communication capabilities of edge networks, a major challenge in developing decentralized bilevel optimization techniques is to lower sample and communication complexities. This motivates us to develop a new decentralized bilevel optimization called DIAMOND (decentralized single-timescale stochastic approximation with momentum and gradient-tracking). The contributions of this paper are as follows: i) our DIAMOND algorithm adopts a single-loop structure rather than following the natural double-loop structure of bilevel optimization, which offers low computation and implementation complexity; ii) compared to existing approaches, the DIAMOND algorithm does not require any full gradient evaluations, which further reduces both sample and computational complexities; iii) through a careful integration of momentum information and gradient tracking techniques, we show that the DIAMOND algorithm enjoys $\mathcal{O}(\epsilon^{-3/2})$ in sample and communication complexities for achieving an $\epsilon$-stationary solution, both of which are independent of the dataset sizes and significantly outperform existing works. Extensive experiments also verify our theoretical findings.