Abstract:Metric learning is central to retrieval, yet its effects on embedding geometry and optimization dynamics are not well understood. We introduce a diagnostic framework, VARIANCE (intra-/inter-class variance) and GREEDINESS (active ratio and gradient norms), to compare seven representative losses, i.e., Contrastive, Triplet, N-pair, InfoNCE, ArcFace, SCL, and CCL, across five image-retrieval datasets. Our analysis reveals that Triplet and SCL preserve higher within-class variance and clearer inter-class margins, leading to stronger top-1 retrieval in fine-grained settings. In contrast, Contrastive and InfoNCE compact embeddings are achieved quickly through many small updates, accelerating convergence but potentially oversimplifying class structures. N-pair achieves a large mean separation but with uneven spacing. These insights reveal a form of efficiency-granularity trade-off and provide practical guidance: prefer Triplet/SCL when diversity preservation and hard-sample discrimination are critical, and Contrastive/InfoNCE when faster embedding compaction is desired.
Abstract:Learning robust audio-visual embeddings requires bringing genuinely related audio and visual signals together while filtering out incidental co-occurrences - background noise, unrelated elements, or unannotated events. Most contrastive and triplet-loss methods use sparse annotated labels per clip and treat any co-occurrence as semantic similarity. For example, a video labeled "train" might also contain motorcycle audio and visual, because "motorcycle" is not the chosen annotation; standard methods treat these co-occurrences as negatives to true motorcycle anchors elsewhere, creating false negatives and missing true cross-modal dependencies. We propose a framework that leverages soft-label predictions and inferred latent interactions to address these issues: (1) Audio-Visual Semantic Alignment Loss (AV-SAL) trains a teacher network to produce aligned soft-label distributions across modalities, assigning nonzero probability to co-occurring but unannotated events and enriching the supervision signal. (2) Inferred Latent Interaction Graph (ILI) applies the GRaSP algorithm to teacher soft labels to infer a sparse, directed dependency graph among classes. This graph highlights directional dependencies (e.g., "Train (visual)" -> "Motorcycle (audio)") that expose likely semantic or conditional relationships between classes; these are interpreted as estimated dependency patterns. (3) Latent Interaction Regularizer (LIR): A student network is trained with both metric loss and a regularizer guided by the ILI graph, pulling together embeddings of dependency-linked but unlabeled pairs in proportion to their soft-label probabilities. Experiments on AVE and VEGAS benchmarks show consistent improvements in mean average precision (mAP), demonstrating that integrating inferred latent interactions into embedding learning enhances robustness and semantic coherence.
Abstract:Effective persuasive dialogue agents adapt their strategies to individual users, accounting for the evolution of their psychological states and intentions throughout conversations. We present a personality-aware reinforcement learning approach comprising three main modules: (1) a Strategy-Oriented Interaction Framework, which serves as an agenda-based strategy controller that selects strategy-level actions and generate responses via Maximal Marginal Relevance (MMR) retrieval to ensure contextual relevance, diversity, and scalable data generation; (2) Personality-Aware User Representation Learning, which produces an 81-dimensional mixed-type embedding predicted at each turn from recent exchanges and appended to the reinforcement learning state; and (3) a Dueling Double DQN (D3QN) model and Reward Prediction, in which the policy is conditioned on dialogue history and turn-level personality estimates and trained using a composite reward incorporating agreement intent, donation amount, and changeof-mind penalties. We use an agenda-based LLM simulation pipeline to generate diverse interactions, from which personality estimation is inferred from the generated utterances. Experiments on the PersuasionForGood (P4G) dataset augmented with simulated dialogues reveal three main findings: (i) turn-level personality conditioning improves policy adaptability and cumulative persuasion rewards; (ii) LLM-driven simulation enhances generalization to unseen user behaviors; and (iii) incorporating a change-of-mind penalty reduces post-agreement retractions while slightly improving donation outcomes. These results demonstrate that structured interaction, dynamic personality estimation, and behaviorally informed rewards together yield more effective persuasive policies.
Abstract:Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
Abstract:Tailoring persuasive conversations to users leads to more effective persuasion. However, existing dialogue systems often struggle to adapt to dynamically evolving user states. This paper presents a novel method that leverages causal discovery and counterfactual reasoning for optimizing system persuasion capability and outcomes. We employ the Greedy Relaxation of the Sparsest Permutation (GRaSP) algorithm to identify causal relationships between user and system utterance strategies, treating user strategies as states and system strategies as actions. GRaSP identifies user strategies as causal factors influencing system responses, which inform Bidirectional Conditional Generative Adversarial Networks (BiCoGAN) in generating counterfactual utterances for the system. Subsequently, we use the Dueling Double Deep Q-Network (D3QN) model to utilize counterfactual data to determine the best policy for selecting system utterances. Our experiments with the PersuasionForGood dataset show measurable improvements in persuasion outcomes using our approach over baseline methods. The observed increase in cumulative rewards and Q-values highlights the effectiveness of causal discovery in enhancing counterfactual reasoning and optimizing reinforcement learning policies for online dialogue systems.
Abstract:Metric learning projects samples into an embedded space, where similarities and dissimilarities are quantified based on their learned representations. However, existing methods often rely on label-guided representation learning, where representations of different modalities, such as audio and visual data, are aligned based on annotated labels. This approach tends to underutilize latent complex features and potential relationships inherent in the distributions of audio and visual data that are not directly tied to the labels, resulting in suboptimal performance in audio-visual embedding learning. To address this issue, we propose a novel architecture that integrates cross-modal triplet loss with progressive self-distillation. Our method enhances representation learning by leveraging inherent distributions and dynamically refining soft audio-visual alignments -- probabilistic alignments between audio and visual data that capture the inherent relationships beyond explicit labels. Specifically, the model distills audio-visual distribution-based knowledge from annotated labels in a subset of each batch. This self-distilled knowledge is used t
Abstract:Capturing complex hierarchical human activities, from atomic actions (e.g., picking up one present, moving to the sofa, unwrapping the present) to contextual events (e.g., celebrating Christmas) is crucial for achieving high-performance video question answering (VideoQA). Recent works have expanded multimodal models (e.g., CLIP, LLaVA) to process continuous video sequences, enhancing the model's temporal reasoning capabilities. However, these approaches often fail to capture contextual events that can be decomposed into multiple atomic actions non-continuously distributed over relatively long-term sequences. In this paper, to leverage the spatial visual context representation capability of the CLIP model for obtaining non-continuous visual representations in terms of contextual events in videos, we convert long-term video sequences into a spatial image domain and finetune the multimodal model LLaVA for the VideoQA task. Our approach achieves competitive performance on the STAR task, in particular, with a 78.4% accuracy score, exceeding the current state-of-the-art score by 2.8 points on the NExTQA task.
Abstract:Video question answering (VideoQA) is a task to predict the correct answer to questions posed about a given video. The system must comprehend spatial and temporal relationships among objects extracted from videos to perform causal and temporal reasoning. While prior works have focused on modeling individual object movements using transformer-based methods, they falter when capturing complex scenarios involving multiple objects (e.g., "a boy is throwing a ball in a hoop"). We propose a contrastive language event graph representation learning method called CLanG to address this limitation. Aiming to capture event representations associated with multiple objects, our method employs a multi-layer GNN-cluster module for adversarial graph representation learning, enabling contrastive learning between the question text and its relevant multi-object event graph. Our method outperforms a strong baseline, achieving up to 2.2% higher accuracy on two challenging VideoQA datasets, NExT-QA and TGIF-QA-R. In particular, it is 2.8% better than baselines in handling causal and temporal questions, highlighting its strength in reasoning multiple object-based events.
Abstract:Customizing persuasive conversations related to the outcome of interest for specific users achieves better persuasion results. However, existing persuasive conversation systems rely on persuasive strategies and encounter challenges in dynamically adjusting dialogues to suit the evolving states of individual users during interactions. This limitation restricts the system's ability to deliver flexible or dynamic conversations and achieve suboptimal persuasion outcomes. In this paper, we present a novel approach that tracks a user's latent personality dimensions (LPDs) during ongoing persuasion conversation and generates tailored counterfactual utterances based on these LPDs to optimize the overall persuasion outcome. In particular, our proposed method leverages a Bi-directional Generative Adversarial Network (BiCoGAN) in tandem with a Dialogue-based Personality Prediction Regression (DPPR) model to generate counterfactual data. This enables the system to formulate alternative persuasive utterances that are more suited to the user. Subsequently, we utilize the D3QN model to learn policies for optimized selection of system utterances on counterfactual data. Experimental results we obtained from using the PersuasionForGood dataset demonstrate the superiority of our approach over the existing method, BiCoGAN. The cumulative rewards and Q-values produced by our method surpass ground truth benchmarks, showcasing the efficacy of employing counterfactual reasoning and LPDs to optimize reinforcement learning policy in online interactions.
Abstract:Metric learning minimizes the gap between similar (positive) pairs of data points and increases the separation of dissimilar (negative) pairs, aiming at capturing the underlying data structure and enhancing the performance of tasks like audio-visual cross-modal retrieval (AV-CMR). Recent works employ sampling methods to select impactful data points from the embedding space during training. However, the model training fails to fully explore the space due to the scarcity of training data points, resulting in an incomplete representation of the overall positive and negative distributions. In this paper, we propose an innovative Anchor-aware Deep Metric Learning (AADML) method to address this challenge by uncovering the underlying correlations among existing data points, which enhances the quality of the shared embedding space. Specifically, our method establishes a correlation graph-based manifold structure by considering the dependencies between each sample as the anchor and its semantically similar samples. Through dynamic weighting of the correlations within this underlying manifold structure using an attention-driven mechanism, Anchor Awareness (AA) scores are obtained for each anchor. These AA scores serve as data proxies to compute relative distances in metric learning approaches. Extensive experiments conducted on two audio-visual benchmark datasets demonstrate the effectiveness of our proposed AADML method, significantly surpassing state-of-the-art models. Furthermore, we investigate the integration of AA proxies with various metric learning methods, further highlighting the efficacy of our approach.