Abstract:In this paper, we present a novel low-light image enhancement method called dark region-aware low-light image enhancement (DALE), where dark regions are accurately recognized by the proposed visual attention module and their brightness are intensively enhanced. Our method can estimate the visual attention in an efficient manner using super-pixels without any complicated process. Thus, the method can preserve the color, tone, and brightness of original images and prevents normally illuminated areas of the images from being saturated and distorted. Experimental results show that our method accurately identifies dark regions via the proposed visual attention, and qualitatively and quantitatively outperforms state-of-the-art methods.
Abstract:This paper reviews the AIM 2019 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided in the challenge. In Track 1: Source Domain the aim is to super-resolve such images while preserving the low level image characteristics of the source input domain. In Track 2: Target Domain a set of high-quality images is also provided for training, that defines the output domain and desired quality of the super-resolved images. To allow for quantitative evaluation, the source input images in both tracks are constructed using artificial, but realistic, image degradations. The challenge is the first of its kind, aiming to advance the state-of-the-art and provide a standard benchmark for this newly emerging task. In total 7 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.