Abstract:Style representation learning builds content-independent representations of author style in text. Stylometry, the analysis of style in text, is often performed by expert forensic linguists and no large dataset of stylometric annotations exists for training. Current style representation learning uses neural methods to disentangle style from content to create style vectors, however, these approaches result in uninterpretable representations, complicating their usage in downstream applications like authorship attribution where auditing and explainability is critical. In this work, we use prompting to perform stylometry on a large number of texts to create a synthetic dataset and train human-interpretable style representations we call LISA embeddings. We release our synthetic stylometry dataset and our interpretable style models as resources.
Abstract:While Chain-of-Thought (CoT) prompting boosts Language Models' (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a faithful-by-construction framework that decomposes a reasoning task into two stages: Translation (Natural Language query $\rightarrow$ symbolic reasoning chain) and Problem Solving (reasoning chain $\rightarrow$ answer), using an LM and a deterministic solver respectively. We demonstrate the efficacy of our approach on 10 reasoning datasets from 4 diverse domains. It outperforms traditional CoT prompting on 9 out of the 10 datasets, with an average accuracy gain of 4.4 on Math Word Problems, 1.9 on Planning, 4.0 on Multi-hop Question Answering (QA), and 18.1 on Logical Inference, under greedy decoding. Together with self-consistency decoding, we achieve new state-of-the-art few-shot performance on 7 out of the 10 datasets, showing a strong synergy between faithfulness and accuracy.
Abstract:We study transfer learning in convolutional network architectures applied to the task of recognizing audio, such as environmental sound events and speech commands. Our key finding is that not only is it possible to transfer representations from an unrelated task like environmental sound classification to a voice-focused task like speech command recognition, but also that doing so improves accuracies significantly. We also investigate the effect of increased model capacity for transfer learning audio, by first validating known results from the field of Computer Vision of achieving better accuracies with increasingly deeper networks on two audio datasets: UrbanSound8k and the newly released Google Speech Commands dataset. Then we propose a simple multiscale input representation using dilated convolutions and show that it is able to aggregate larger contexts and increase classification performance. Further, the models trained using a combination of transfer learning and multiscale input representations need only 40% of the training data to achieve similar accuracies as a freshly trained model with 100% of the training data. Finally, we demonstrate a positive interaction effect for the multiscale input and transfer learning, making a case for the joint application of the two techniques.