Picture for David Tellez

David Tellez

Extending Unsupervised Neural Image Compression With Supervised Multitask Learning

Add code
Apr 15, 2020
Figure 1 for Extending Unsupervised Neural Image Compression With Supervised Multitask Learning
Figure 2 for Extending Unsupervised Neural Image Compression With Supervised Multitask Learning
Figure 3 for Extending Unsupervised Neural Image Compression With Supervised Multitask Learning
Figure 4 for Extending Unsupervised Neural Image Compression With Supervised Multitask Learning
Viaarxiv icon

Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology

Add code
Feb 18, 2019
Figure 1 for Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
Figure 2 for Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
Figure 3 for Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
Figure 4 for Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
Viaarxiv icon

Neural Image Compression for Gigapixel Histopathology Image Analysis

Add code
Nov 07, 2018
Figure 1 for Neural Image Compression for Gigapixel Histopathology Image Analysis
Figure 2 for Neural Image Compression for Gigapixel Histopathology Image Analysis
Figure 3 for Neural Image Compression for Gigapixel Histopathology Image Analysis
Figure 4 for Neural Image Compression for Gigapixel Histopathology Image Analysis
Viaarxiv icon

Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks

Add code
Aug 17, 2018
Figure 1 for Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks
Figure 2 for Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks
Figure 3 for Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks
Figure 4 for Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks
Viaarxiv icon

Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge

Add code
Jul 22, 2018
Figure 1 for Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge
Figure 2 for Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge
Figure 3 for Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge
Figure 4 for Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge
Viaarxiv icon