Abstract:Generative artificial intelligence (AI) has brought revolutionary innovations in various fields, including medicine. However, it also exhibits limitations. In response, retrieval-augmented generation (RAG) provides a potential solution, enabling models to generate more accurate contents by leveraging the retrieval of external knowledge. With the rapid advancement of generative AI, RAG can pave the way for connecting this transformative technology with medical applications and is expected to bring innovations in equity, reliability, and personalization to health care.
Abstract:Background Advancements in Large Language Models (LLMs) hold transformative potential in healthcare, however, recent work has raised concern about the tendency of these models to produce outputs that display racial or gender biases. Although training data is a likely source of such biases, exploration of disease and demographic associations in text data at scale has been limited. Methods We conducted a large-scale textual analysis using a dataset comprising diverse web sources, including Arxiv, Wikipedia, and Common Crawl. The study analyzed the context in which various diseases are discussed alongside markers of race and gender. Given that LLMs are pre-trained on similar datasets, this approach allowed us to examine the potential biases that LLMs may learn and internalize. We compared these findings with actual demographic disease prevalence as well as GPT-4 outputs in order to evaluate the extent of bias representation. Results Our findings indicate that demographic terms are disproportionately associated with specific disease concepts in online texts. gender terms are prominently associated with disease concepts, while racial terms are much less frequently associated. We find widespread disparities in the associations of specific racial and gender terms with the 18 diseases analyzed. Most prominently, we see an overall significant overrepresentation of Black race mentions in comparison to population proportions. Conclusions Our results highlight the need for critical examination and transparent reporting of biases in LLM pretraining datasets. Our study suggests the need to develop mitigation strategies to counteract the influence of biased training data in LLMs, particularly in sensitive domains such as healthcare.