Abstract:Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of low-cost robots, researchers may end up spending countless hours brainstorming robot configurations and policies to ``organically" create behaviors which do not need expensive sensors and perception. Existing research explores the possible emergent behaviors in swarms of robots with only a binary sensor and a simple but hand-picked controller structure. Even agents in this highly limited sensing, actuation, and computational capability class can exhibit relatively complex global behaviors such as aggregation, milling, and dispersal, but finding the local interaction rules that enable more collective behaviors remains a significant challenge. This paper investigates the feasibility of training spiking neural networks to find those local interaction rules that result in particular emergent behaviors. In this paper, we focus on simulating a specific milling behavior already known to be producible using very simple binary sensing and acting agents. To do this, we use evolutionary algorithms to evolve not only the parameters (the weights, biases, and delays) of a spiking neural network, but also its structure. To create a baseline, we also show an evolutionary search strategy over the parameters for the incumbent hand-picked binary controller structure. Our simulations show that spiking neural networks can be evolved in binary sensing agents to form a mill.
Abstract:Despite significant research, robotic swarms have yet to be useful in solving real-world problems, largely due to the difficulty of creating and controlling swarming behaviors in multi-agent systems. Traditional top-down approaches in which a desired emergent behavior is produced often require complex, resource-heavy robots, limiting their practicality. This paper introduces a bottom-up approach by employing an Embodied Agent-Based Modeling and Simulation approach, emphasizing the use of simple robots and identifying conditions that naturally lead to self-organized collective behaviors. Using the Reality-to-Simulation-to-Reality for Swarms (RSRS) process, we tightly integrate real-world experiments with simulations to reproduce known swarm behaviors as well as discovering a novel emergent behavior without aiming to eliminate or even reduce the sim2real gap. This paper presents the development of an Agent-Based Embodiment and Emulation process that balances the importance of running physical swarming experiments and the prohibitively time-consuming process of even setting up and running a single experiment with 20+ robots by leveraging low-fidelity lightweight simulations to enable hypothesis-formation to guide physical experiments. We demonstrate the usefulness of our methods by emulating two known behaviors from the literature and show a third behavior `discovered' by accident.
Abstract:We study the problem of cross-embodiment inverse reinforcement learning, where we wish to learn a reward function from video demonstrations in one or more embodiments and then transfer the learned reward to a different embodiment (e.g., different action space, dynamics, size, shape, etc.). Learning reward functions that transfer across embodiments is important in settings such as teaching a robot a policy via human video demonstrations or teaching a robot to imitate a policy from another robot with a different embodiment. However, prior work has only focused on cases where near-optimal demonstrations are available, which is often difficult to ensure. By contrast, we study the setting of cross-embodiment reward learning from mixed-quality demonstrations. We demonstrate that prior work struggles to learn generalizable reward representations when learning from mixed-quality data. We then analyze several techniques that leverage human feedback for representation learning and alignment to enable effective cross-embodiment learning. Our results give insight into how different representation learning techniques lead to qualitatively different reward shaping behaviors and the importance of human feedback when learning from mixed-quality, mixed-embodiment data.
Abstract:Automating robotic surgery via learning from demonstration (LfD) techniques is extremely challenging. This is because surgical tasks often involve sequential decision-making processes with complex interactions of physical objects and have low tolerance for mistakes. Prior works assume that all demonstrations are fully observable and optimal, which might not be practical in the real world. This paper introduces a sample-efficient method that learns a robust reward function from a limited amount of ranked suboptimal demonstrations consisting of partial-view point cloud observations. The method then learns a policy by optimizing the learned reward function using reinforcement learning (RL). We show that using a learned reward function to obtain a policy is more robust than pure imitation learning. We apply our approach on a physical surgical electrocautery task and demonstrate that our method can perform well even when the provided demonstrations are suboptimal and the observations are high-dimensional point clouds.
Abstract:Tendon-driven continuum robot kinematic models are frequently computationally expensive, inaccurate due to unmodeled effects, or both. In particular, unmodeled effects produce uncertainties that arise during the robot's operation that lead to variability in the resulting geometry. We propose a novel solution to these issues through the development of a Gaussian mixture kinematic model. We train a mixture density network to output a Gaussian mixture model representation of the robot geometry given the current tendon displacements. This model computes a probability distribution that is more representative of the true distribution of geometries at a given configuration than a model that outputs a single geometry, while also reducing the computation time. We demonstrate one use of this model through a trajectory optimization method that explicitly reasons about the workspace uncertainty to minimize the probability of collision.
Abstract:It is crucial for robots to be aware of the presence of constraints in order to acquire safe policies. However, explicitly specifying all constraints in an environment can be a challenging task. State-of-the-art constraint inference algorithms learn constraints from demonstrations, but tend to be computationally expensive and prone to instability issues. In this paper, we propose a novel Bayesian method that infers constraints based on preferences over demonstrations. The main advantages of our proposed approach are that it 1) infers constraints without calculating a new policy at each iteration, 2) uses a simple and more realistic ranking of groups of demonstrations, without requiring pairwise comparisons over all demonstrations, and 3) adapts to cases where there are varying levels of constraint violation. Our empirical results demonstrate that our proposed Bayesian approach infers constraints of varying severity, more accurately than state-of-the-art constraint inference methods.
Abstract:We study the problem of determining the emergent behaviors that are possible given a functionally heterogeneous swarm of robots with limited capabilities. Prior work has considered behavior search for homogeneous swarms and proposed the use of novelty search over either a hand-specified or learned behavior space followed by clustering to return a taxonomy of emergent behaviors to the user. In this paper, we seek to better understand the role of novelty search and the efficacy of using clustering to discover novel emergent behaviors. Through a large set of experiments and ablations, we analyze the effect of representations, evolutionary search, and various clustering methods in the search for novel behaviors in a heterogeneous swarm. Our results indicate that prior methods fail to discover many interesting behaviors and that an iterative human-in-the-loop discovery process discovers more behaviors than random search, swarm chemistry, and automated behavior discovery. The combined discoveries of our experiments uncover 23 emergent behaviors, 18 of which are novel discoveries. To the best of our knowledge, these are the first known emergent behaviors for heterogeneous swarms of computation-free agents. Videos, code, and appendix are available at the project website: https://sites.google.com/view/heterogeneous-bd-methods
Abstract:Our ultimate goal is to build robust policies for robots that assist people. What makes this hard is that people can behave unexpectedly at test time, potentially interacting with the robot outside its training distribution and leading to failures. Even just measuring robustness is a challenge. Adversarial perturbations are the default, but they can paint the wrong picture: they can correspond to human motions that are unlikely to occur during natural interactions with people. A robot policy might fail under small adversarial perturbations but work under large natural perturbations. We propose that capturing robustness in these interactive settings requires constructing and analyzing the entire natural-adversarial frontier: the Pareto-frontier of human policies that are the best trade-offs between naturalness and low robot performance. We introduce RIGID, a method for constructing this frontier by training adversarial human policies that trade off between minimizing robot reward and acting human-like (as measured by a discriminator). On an Assistive Gym task, we use RIGID to analyze the performance of standard collaborative Reinforcement Learning, as well as the performance of existing methods meant to increase robustness. We also compare the frontier RIGID identifies with the failures identified in expert adversarial interaction, and with naturally-occurring failures during user interaction. Overall, we find evidence that RIGID can provide a meaningful measure of robustness predictive of deployment performance, and uncover failure cases in human-robot interaction that are difficult to find manually. https://ood-human.github.io.
Abstract:This paper for the first time attempts to bridge the knowledge between chemistry, fluid mechanics, and robot swarms. By forming these connections, we attempt to leverage established methodologies and tools from these these domains to uncover how we can better comprehend swarms. The focus of this paper is in presenting a new framework and sharing the reasons we find it promising and exciting. While the exact methods are still under development, we believe simply laying out a potential path towards solutions that have evaded our traditional methods using a novel method is worth considering. Our results are characterized through both simulations and real experiments on ground robots.
Abstract:Deep neural networks often fail catastrophically by relying on spurious correlations. Most prior work assumes a clear dichotomy into spurious and reliable features; however, this is often unrealistic. For example, most of the time we do not want an autonomous car to simply copy the speed of surrounding cars -- we don't want our car to run a red light if a neighboring car does so. However, we cannot simply enforce invariance to next-lane speed, since it could provide valuable information about an unobservable pedestrian at a crosswalk. Thus, universally ignoring features that are sometimes (but not always) reliable can lead to non-robust performance. We formalize a new setting called contextual reliability which accounts for the fact that the "right" features to use may vary depending on the context. We propose and analyze a two-stage framework called Explicit Non-spurious feature Prediction (ENP) which first identifies the relevant features to use for a given context, then trains a model to rely exclusively on these features. Our work theoretically and empirically demonstrates the advantages of ENP over existing methods and provides new benchmarks for contextual reliability.