Abstract:Factor graph optimization serves as a fundamental framework for robotic perception, enabling applications such as pose estimation, simultaneous localization and mapping (SLAM), structure-from-motion (SfM), and situational awareness. Traditionally, these methods solve unconstrained least squares problems using algorithms such as Gauss-Newton and Levenberg-Marquardt. However, extending factor graphs with native support for equality constraints can improve solution accuracy and broaden their applicability, particularly in optimal control. In this paper, we propose a novel extension of factor graphs that seamlessly incorporates equality constraints without requiring additional optimization algorithms. Our approach maintains the efficiency and flexibility of existing second-order optimization techniques while ensuring constraint feasibility. To validate our method, we apply it to an optimal control problem for velocity tracking in autonomous vehicles and benchmark our results against state-of-the-art constraint handling techniques. Additionally, we introduce ecg2o, a header-only C++ library that extends the widely used g2o factor graph library by adding full support for equality-constrained optimization. This library, along with demonstrative examples and the optimal control problem, is available as open source at https://github.com/snt-arg/ecg2o
Abstract:The importance of proper data normalization for deep neural networks is well known. However, in continuous-time state-space model estimation, it has been observed that improper normalization of either the hidden state or hidden state derivative of the model estimate, or even of the time interval can lead to numerical and optimization challenges with deep learning based methods. This results in a reduced model quality. In this contribution, we show that these three normalization tasks are inherently coupled. Due to the existence of this coupling, we propose a solution to all three normalization challenges by introducing a normalization constant at the state derivative level. We show that the appropriate choice of the normalization constant is related to the dynamics of the to-be-identified system and we derive multiple methods of obtaining an effective normalization constant. We compare and discuss all the normalization strategies on a benchmark problem based on experimental data from a cascaded tanks system and compare our results with other methods of the identification literature.
Abstract:In a typical car-following scenario, target vehicle speed fluctuations act as an external disturbance to the host vehicle and in turn affect its energy consumption. To control a host vehicle in an energy-efficient manner using model predictive control (MPC), and moreover, enhance the performance of an ecological adaptive cruise control (EACC) strategy, forecasting the future velocities of a target vehicle is essential. For this purpose, a deep recurrent neural network-based vehicle speed prediction using long-short term memory (LSTM) and gated recurrent units (GRU) is studied in this work. Besides these, the physics-based constant velocity (CV) and constant acceleration (CA) models are discussed. The sequential time series data for training (e.g. speed trajectories of the target and its preceding vehicles obtained through vehicle-to-vehicle (V2V) communication, road speed limits, traffic light current and future phases collected using vehicle-to-infrastructure (V2I) communication) is gathered from both urban and highway networks created in the microscopic traffic simulator SUMO. The proposed speed prediction models are evaluated for long-term predictions (up to 10 s) of target vehicle future velocities. Moreover, the results revealed that the LSTM-based speed predictor outperformed other models in terms of achieving better prediction accuracy on unseen test datasets, and thereby showcasing better generalization ability. Furthermore, the performance of EACC-equipped host car on the predicted velocities is evaluated, and its energy-saving benefits for different prediction horizons are presented.