Abstract:Factor graph optimization serves as a fundamental framework for robotic perception, enabling applications such as pose estimation, simultaneous localization and mapping (SLAM), structure-from-motion (SfM), and situational awareness. Traditionally, these methods solve unconstrained least squares problems using algorithms such as Gauss-Newton and Levenberg-Marquardt. However, extending factor graphs with native support for equality constraints can improve solution accuracy and broaden their applicability, particularly in optimal control. In this paper, we propose a novel extension of factor graphs that seamlessly incorporates equality constraints without requiring additional optimization algorithms. Our approach maintains the efficiency and flexibility of existing second-order optimization techniques while ensuring constraint feasibility. To validate our method, we apply it to an optimal control problem for velocity tracking in autonomous vehicles and benchmark our results against state-of-the-art constraint handling techniques. Additionally, we introduce ecg2o, a header-only C++ library that extends the widely used g2o factor graph library by adding full support for equality-constrained optimization. This library, along with demonstrative examples and the optimal control problem, is available as open source at https://github.com/snt-arg/ecg2o