Abstract:In a typical car-following scenario, target vehicle speed fluctuations act as an external disturbance to the host vehicle and in turn affect its energy consumption. To control a host vehicle in an energy-efficient manner using model predictive control (MPC), and moreover, enhance the performance of an ecological adaptive cruise control (EACC) strategy, forecasting the future velocities of a target vehicle is essential. For this purpose, a deep recurrent neural network-based vehicle speed prediction using long-short term memory (LSTM) and gated recurrent units (GRU) is studied in this work. Besides these, the physics-based constant velocity (CV) and constant acceleration (CA) models are discussed. The sequential time series data for training (e.g. speed trajectories of the target and its preceding vehicles obtained through vehicle-to-vehicle (V2V) communication, road speed limits, traffic light current and future phases collected using vehicle-to-infrastructure (V2I) communication) is gathered from both urban and highway networks created in the microscopic traffic simulator SUMO. The proposed speed prediction models are evaluated for long-term predictions (up to 10 s) of target vehicle future velocities. Moreover, the results revealed that the LSTM-based speed predictor outperformed other models in terms of achieving better prediction accuracy on unseen test datasets, and thereby showcasing better generalization ability. Furthermore, the performance of EACC-equipped host car on the predicted velocities is evaluated, and its energy-saving benefits for different prediction horizons are presented.