Abstract:Animal sounds can be recognised automatically by machine learning, and this has an important role to play in biodiversity monitoring. Yet despite increasingly impressive capabilities, bioacoustic species classifiers still exhibit imbalanced performance across species and habitats, especially in complex soundscapes. In this study, we explore the effectiveness of transfer learning in large-scale bird sound classification across various conditions, including single- and multi-label scenarios, and across different model architectures such as CNNs and Transformers. Our experiments demonstrate that both fine-tuning and knowledge distillation yield strong performance, with cross-distillation proving particularly effective in improving in-domain performance on Xeno-canto data. However, when generalizing to soundscapes, shallow fine-tuning exhibits superior performance compared to knowledge distillation, highlighting its robustness and constrained nature. Our study further investigates how to use multi-species labels, in cases where these are present but incomplete. We advocate for more comprehensive labeling practices within the animal sound community, including annotating background species and providing temporal details, to enhance the training of robust bird sound classifiers. These findings provide insights into the optimal reuse of pretrained models for advancing automatic bioacoustic recognition.
Abstract:Acoustic identification of individual animals (AIID) is closely related to audio-based species classification but requires a finer level of detail to distinguish between individual animals within the same species. In this work, we frame AIID as a hierarchical multi-label classification task and propose the use of hierarchy-aware loss functions to learn robust representations of individual identities that maintain the hierarchical relationships among species and taxa. Our results demonstrate that hierarchical embeddings not only enhance identification accuracy at the individual level but also at higher taxonomic levels, effectively preserving the hierarchical structure in the learned representations. By comparing our approach with non-hierarchical models, we highlight the advantage of enforcing this structure in the embedding space. Additionally, we extend the evaluation to the classification of novel individual classes, demonstrating the potential of our method in open-set classification scenarios.
Abstract:Bioacoustic research provides invaluable insights into the behavior, ecology, and conservation of animals. Most bioacoustic datasets consist of long recordings where events of interest, such as vocalizations, are exceedingly rare. Analyzing these datasets poses a monumental challenge to researchers, where deep learning techniques have emerged as a standard method. Their adaptation remains challenging, focusing on models conceived for computer vision, where the audio waveforms are engineered into spectrographic representations for training and inference. We improve the current state of deep learning in bioacoustics in two ways: First, we present the animal2vec framework: a fully interpretable transformer model and self-supervised training scheme tailored for sparse and unbalanced bioacoustic data. Second, we openly publish MeerKAT: Meerkat Kalahari Audio Transcripts, a large-scale dataset containing audio collected via biologgers deployed on free-ranging meerkats with a length of over 1068h, of which 184h have twelve time-resolved vocalization-type classes, each with ms-resolution, making it the largest publicly-available labeled dataset on terrestrial mammals. Further, we benchmark animal2vec against the NIPS4Bplus birdsong dataset. We report new state-of-the-art results on both datasets and evaluate the few-shot capabilities of animal2vec of labeled training data. Finally, we perform ablation studies to highlight the differences between our architecture and a vanilla transformer baseline for human-produced sounds. animal2vec allows researchers to classify massive amounts of sparse bioacoustic data even with little ground truth information available. In addition, the MeerKAT dataset is the first large-scale, millisecond-resolution corpus for benchmarking bioacoustic models in the pretrain/finetune paradigm. We believe this sets the stage for a new reference point for bioacoustics.
Abstract:With fine-grained classification, we identify unique characteristics to distinguish among classes of the same super-class. We are focusing on species recognition in Insecta, as they are critical for biodiversity monitoring and at the base of many ecosystems. With citizen science campaigns, billions of images are collected in the wild. Once these are labelled, experts can use them to create distribution maps. However, the labelling process is time-consuming, which is where computer vision comes in. The field of computer vision offers a wide range of algorithms, each with its strengths and weaknesses; how do we identify the algorithm that is in line with our application? To answer this question, we provide a full and detailed evaluation of nine algorithms among deep convolutional networks (CNN), vision transformers (ViT), and locality-based vision transformers (LBVT) on 4 different aspects: classification performance, embedding quality, computational cost, and gradient activity. We offer insights that we haven't yet had in this domain proving to which extent these algorithms solve the fine-grained tasks in Insecta. We found that the ViT performs the best on inference speed and computational cost while the LBVT outperforms the others on performance and embedding quality; the CNN provide a trade-off among the metrics.
Abstract:Detecting the presence of animal vocalisations in nature is essential to study animal populations and their behaviors. A recent development in the field is the introduction of the task known as few-shot bioacoustic sound event detection, which aims to train a versatile animal sound detector using only a small set of audio samples. Previous efforts in this area have utilized different architectures and data augmentation techniques to enhance model performance. However, these approaches have not fully bridged the domain gap between source and target distributions, limiting their applicability in real-world scenarios. In this work, we introduce an new dataset designed to augment the diversity and breadth of classes available for few-shot bioacoustic event detection, building on the foundations of our previous datasets. To establish a robust baseline system tailored for the DCASE 2024 Task 5 challenge, we delve into an array of acoustic features and adopt negative hard sampling as our primary domain adaptation strategy. This approach, chosen in alignment with the challenge's guidelines that necessitate the independent treatment of each audio file, sidesteps the use of transductive learning to ensure compliance while aiming to enhance the system's adaptability to domain shifts. Our experiments show that the proposed baseline system achieves a better performance compared with the vanilla prototypical network. The findings also confirm the effectiveness of each domain adaptation method by ablating different components within the networks. This highlights the potential to improve few-shot bioacoustic sound event detection by further reducing the impact of domain shift.
Abstract:The ongoing biodiversity crisis, driven by factors such as land-use change and global warming, emphasizes the need for effective ecological monitoring methods. Acoustic monitoring of biodiversity has emerged as an important monitoring tool. Detecting human voices in soundscape monitoring projects is useful both for analysing human disturbance and for privacy filtering. Despite significant strides in deep learning in recent years, the deployment of large neural networks on compact devices poses challenges due to memory and latency constraints. Our approach focuses on leveraging knowledge distillation techniques to design efficient, lightweight student models for speech detection in bioacoustics. In particular, we employed the MobileNetV3-Small-Pi model to create compact yet effective student architectures to compare against the larger EcoVAD teacher model, a well-regarded voice detection architecture in eco-acoustic monitoring. The comparative analysis included examining various configurations of the MobileNetV3-Small-Pi derived student models to identify optimal performance. Additionally, a thorough evaluation of different distillation techniques was conducted to ascertain the most effective method for model selection. Our findings revealed that the distilled models exhibited comparable performance to the EcoVAD teacher model, indicating a promising approach to overcoming computational barriers for real-time ecological monitoring.
Abstract:This study investigates the potential of automated deep learning to enhance the accuracy and efficiency of multi-class classification of bird vocalizations, compared against traditional manually-designed deep learning models. Using the Western Mediterranean Wetland Birds dataset, we investigated the use of AutoKeras, an automated machine learning framework, to automate neural architecture search and hyperparameter tuning. Comparative analysis validates our hypothesis that the AutoKeras-derived model consistently outperforms traditional models like MobileNet, ResNet50 and VGG16. Our approach and findings underscore the transformative potential of automated deep learning for advancing bioacoustics research and models. In fact, the automated techniques eliminate the need for manual feature engineering and model design while improving performance. This study illuminates best practices in sampling, evaluation and reporting to enhance reproducibility in this nascent field. All the code used is available at https: //github.com/giuliotosato/AutoKeras-bioacustic Keywords: AutoKeras; automated deep learning; audio classification; Wetlands Bird dataset; comparative analysis; bioacoustics; validation dataset; multi-class classification; spectrograms.
Abstract:Deep learning models such as CNNs and Transformers have achieved impressive performance for end-to-end audio tagging. Recent works have shown that despite stacking multiple layers, the receptive field of CNNs remains severely limited. Transformers on the other hand are able to map global context through self-attention, but treat the spectrogram as a sequence of patches which is not flexible enough to capture irregular audio objects. In this work, we treat the spectrogram in a more flexible way by considering it as graph structure and process it with a novel graph neural architecture called ATGNN. ATGNN not only combines the capability of CNNs with the global information sharing ability of Graph Neural Networks, but also maps semantic relationships between learnable class embeddings and corresponding spectrogram regions. We evaluate ATGNN on two audio tagging tasks, where it achieves 0.585 mAP on the FSD50K dataset and 0.335 mAP on the AudioSet-balanced dataset, achieving comparable results to Transformer based models with significantly lower number of learnable parameters.
Abstract:Fine-grained classification is challenging due to the difficulty of finding discriminatory features. This problem is exacerbated when applied to identifying species within the same taxonomical class. This is because species are often sharing morphological characteristics that make them difficult to differentiate. We consider the taxonomical class of Insecta. The identification of insects is essential in biodiversity monitoring as they are one of the inhabitants at the base of many ecosystems. Citizen science is doing brilliant work of collecting images of insects in the wild giving the possibility to experts to create improved distribution maps in all countries. We have billions of images that need to be automatically classified and deep neural network algorithms are one of the main techniques explored for fine-grained tasks. At the SOTA, the field of deep learning algorithms is extremely fruitful, so how to identify the algorithm to use? We focus on Odonata and Coleoptera orders, and we propose an initial comparative study to analyse the two best-known layer structures for computer vision: transformer and convolutional layers. We compare the performance of T2TViT, a fully transformer-base, EfficientNet, a fully convolutional-base, and ViTAE, a hybrid. We analyse the performance of the three models in identical conditions evaluating the performance per species, per morph together with sex, the inference time, and the overall performance with unbalanced datasets of images from smartphones. Although we observe high performances with all three families of models, our analysis shows that the hybrid model outperforms the fully convolutional-base and fully transformer-base models on accuracy performance and the fully transformer-base model outperforms the others on inference speed and, these prove the transformer to be robust to the shortage of samples and to be faster at inference time.
Abstract:Few-shot bioacoustic event detection consists in detecting sound events of specified types, in varying soundscapes, while having access to only a few examples of the class of interest. This task ran as part of the DCASE challenge for the third time this year with an evaluation set expanded to include new animal species, and a new rule: ensemble models were no longer allowed. The 2023 few shot task received submissions from 6 different teams with F-scores reaching as high as 63% on the evaluation set. Here we describe the task, focusing on describing the elements that differed from previous years. We also take a look back at past editions to describe how the task has evolved. Not only have the F-score results steadily improved (40% to 60% to 63%), but the type of systems proposed have also become more complex. Sound event detection systems are no longer simple variations of the baselines provided: multiple few-shot learning methodologies are still strong contenders for the task.