Abstract:3D visual grounding is a challenging task that often requires direct and dense supervision, notably the semantic label for each object in the scene. In this paper, we instead study the naturally supervised setting that learns from only 3D scene and QA pairs, where prior works underperform. We propose the Language-Regularized Concept Learner (LARC), which uses constraints from language as regularization to significantly improve the accuracy of neuro-symbolic concept learners in the naturally supervised setting. Our approach is based on two core insights: the first is that language constraints (e.g., a word's relation to another) can serve as effective regularization for structured representations in neuro-symbolic models; the second is that we can query large language models to distill such constraints from language properties. We show that LARC improves performance of prior works in naturally supervised 3D visual grounding, and demonstrates a wide range of 3D visual reasoning capabilities-from zero-shot composition, to data efficiency and transferability. Our method represents a promising step towards regularizing structured visual reasoning frameworks with language-based priors, for learning in settings without dense supervision.
Abstract:This paper identifies two kinds of redundancy in the current VideoQA paradigm. Specifically, the current video encoders tend to holistically embed all video clues at different granularities in a hierarchical manner, which inevitably introduces \textit{neighboring-frame redundancy} that can overwhelm detailed visual clues at the object level. Subsequently, prevailing vision-language fusion designs introduce the \textit{cross-modal redundancy} by exhaustively fusing all visual elements with question tokens without explicitly differentiating their pairwise vision-language interactions, thus making a pernicious impact on the answering. To this end, we propose a novel transformer-based architecture, that aims to model VideoQA in a redundancy-aware manner. To address the neighboring-frame redundancy, we introduce a video encoder structure that emphasizes the object-level change in neighboring frames, while adopting an out-of-neighboring message-passing scheme that imposes attention only on distant frames. As for the cross-modal redundancy, we equip our fusion module with a novel adaptive sampling, which explicitly differentiates the vision-language interactions by identifying a small subset of visual elements that exclusively support the answer. Upon these advancements, we find this \underline{R}edundancy-\underline{a}ware trans\underline{former} (RaFormer) can achieve state-of-the-art results on multiple VideoQA benchmarks.
Abstract:This paper strives to solve complex video question answering (VideoQA) which features long video containing multiple objects and events at different time. To tackle the challenge, we highlight the importance of identifying question-critical temporal moments and spatial objects from the vast amount of video content. Towards this, we propose a Spatio-Temporal Rationalization (STR), a differentiable selection module that adaptively collects question-critical moments and objects using cross-modal interaction. The discovered video moments and objects are then served as grounded rationales to support answer reasoning. Based on STR, we further propose TranSTR, a Transformer-style neural network architecture that takes STR as the core and additionally underscores a novel answer interaction mechanism to coordinate STR for answer decoding. Experiments on four datasets show that TranSTR achieves new state-of-the-art (SoTA). Especially, on NExT-QA and Causal-VidQA which feature complex VideoQA, it significantly surpasses the previous SoTA by 5.8\% and 6.8\%, respectively. We then conduct extensive studies to verify the importance of STR as well as the proposed answer interaction mechanism. With the success of TranSTR and our comprehensive analysis, we hope this work can spark more future efforts in complex VideoQA. Code will be released at https://github.com/yl3800/TranSTR.